scholarly journals Deoxynivalenol (Vomitoxin)-Induced Anorexia Is Induced by the Release of Intestinal Hormones in Mice

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 512
Author(s):  
Jianming Yue ◽  
Dawei Guo ◽  
Xiuge Gao ◽  
Jiacai Wang ◽  
Eugenie Nepovimova ◽  
...  

Deoxynivalenol (DON), also known as vomitoxin, is a mycotoxin that can cause antifeeding and vomiting in animals. However, the mechanism of DON inducing anorexia is complicated. Studies have shown that intestinal hormones play a significant part in the anorexia caused by DON. We adopted the “modeling of acute antifeeding in mice” as the basic experimental model, and used two methods of gavage and intraperitoneal injection to explore the effect of intestinal hormones on the antifeedant response induced by DON in mice. We found that 1 and 2.5 mg/kg·bw of DON can acutely induce anorexia and increase the plasma intestinal hormones CCK, PYY, GIP, and GLP-1 in mice within 3 h. Direct injection of exogenous intestinal hormones CCK, PYY, GIP, and GLP-1 can trigger anorexia behavior in mice. Furthermore, the PYY receptor antagonist JNJ-31020028, GLP-1 receptor antagonist Exendin(9-39), CCK receptor antagonist Proglumide, GIP receptor antagonist GIP(3-30)NH2 attenuated both intestinal hormone and DON-induced anorectic responses. These results indicate that intestinal hormones play a critical role in the anorexia response induced by DON.

2003 ◽  
Author(s):  
Julien Moreau ◽  
Jacques Boree ◽  
Rudy Bazile ◽  
Georges Charnay

Diabetes ◽  
2007 ◽  
Vol 56 (4) ◽  
pp. 968-974 ◽  
Author(s):  
K. Sebekova ◽  
T. Eifert ◽  
A. Klassen ◽  
A. Heidland ◽  
K. Amann

Pancreas ◽  
1991 ◽  
Vol 6 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Frank Larsen ◽  
David Schlarman ◽  
Charles C. Andrus ◽  
Donald L. Kaminski

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Elena Gutiérrez-Calabrés ◽  
Sofía Campillo de Blas ◽  
Lourdes Bohorquez Magro ◽  
Mercedes Griera-Merino ◽  
Diego García Ayuso ◽  
...  

Abstract Background and Aims Calpains are intracellular cysteine proteases that play a critical role in cell remodeling, being involved in multiple biological processes linked to tissue damage and repair mechanisms. In addition, they are released into the circulation, being able to carry out systemic actions with pathological consequences. The aim of this study was to investigate the role of calpains in the progression of chronic kidney disease (CKD) in an experimental model of chronic renal damage induced by adenine. Method We induced an experimental model of CKD, in mice fed for 2 weeks with an adenine-supplemented diet (0.2% adenine) (A). Animals receiving this diet develop a tubulointerstitial damage resembling that is observed in human CKD. Mice with standard diet were used as controls (C). Renal function was assessed by measuring serum blood urea nitrogen (BUN) and creatinine (mg/dl). Fibrosis markers (collagen type I and fibronectin) were determined by RT-qPCR. Changes in the renal content of calpains 1 and 2 were analyzed by western blot (protein content), and RT-qPCR (mRNA expression). Results Our results show functional and structural changes at renal level in the adenine-fed mice, with increased BUN (A: 72 mg/dl, C: 28 mg/dl, p < 0.05), creatinine (A: 0.58 mg/dl, C: 0.25 mg/dl, p < 0.05), collagen type I mRNA expression (A: 12.9 units, C: 1.2 units, p < 0.05) and fibronectin mRNA expression (A: 3.46 units, C: 1.3 units, p < 0.05). Furthermore, protein content of calpains 1 (A: 1.27 units, C: 0.78 units, p < 0.05) and 2 (A: 1.30 units, C: 0.66 units, p < 0.05) was significantly higher in adenine-fed mice when compared to control. At the same time, we observed a significant increase in gene expression of both calpain 1 (A: 4.21 units, C: 0.51 units, p < 0.05) and 2 (A: 4.93 units, C: 0.56 units, p < 0.05) in the adenine model regarding to mice with standard diet. Our results demonstrate that calpain 1 and 2 expression in renal tissue increases as CKD progresses. Interestingly, we found statistically significant correlations between renal calpains 1 and 2 protein and mRNA content and plasma BUN and creatinine (p < 0.05, r between 0.79 and 0.92), as well as protein expression of calpain 2 and mRNA expression of collagen type I (p < 0.05, r = 0.76). These data suggest a potential direct relationship between renal calpain 1 and 2 content and loss of renal function, in part due probably to the modulation of the fibrotic changes, in adenine fed mice. Conclusion We suggest an implication of calpains 1 and 2 in the development of CKD. Thus, effective calpain blockade or downregulation could be useful as a therapeutic strategy to prevent CKD. Further experiments will be necessary to establish the relationship between these factors.


Bone ◽  
2020 ◽  
Vol 130 ◽  
pp. 115079 ◽  
Author(s):  
Lærke S. Gasbjerg ◽  
Bolette Hartmann ◽  
Mikkel B. Christensen ◽  
Amalie R. Lanng ◽  
Tina Vilsbøll ◽  
...  

2006 ◽  
Vol 290 (3) ◽  
pp. R642-R651 ◽  
Author(s):  
Chun-Yi Hung ◽  
M. Covasa ◽  
R. C. Ritter ◽  
G. A. Burns

Hindbrain administration of MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) channel blocker, increases meal size, suggesting NMDA receptors in this location participate in control of food intake. However, dizocilpine (MK-801) reportedly antagonizes some non-NMDA ion channels. Therefore, to further assess hindbrain NMDA receptor participation in food intake control, we measured deprivation-induced intakes of 15% sucrose solution or rat chow after intraperitoneal injection of either saline vehicle or d(-)-2-amino-5-phosphonopentanoic acid (AP5), a competitive NMDA receptor antagonist, to the fourth ventricular, or nucleus of the solitary tract (NTS). Intraperitoneal injection of AP5 (0.05, 0.1, 1.0, 3.0, and 5.0 mg/kg) did not alter 30-min sucrose intake at any dose (10.7 ± 0.4 ml, saline control) (11.0 ± 0.8, 11.2 ± 1.0, 11.2 ± 1.0, 13.1 ± 2.2, and 11.0 ± 1.9 ml, AP5 doses, respectively). Fourth ventricular administration of both 0.2 μg (16.7 ± 0.6 ml) and 0.4 μg (14.9 ± 0.5 ml) but not 0.1 and 0.6 μg of AP5 significantly increased 60-min sucrose intake compared with saline (11.2 ± 0.4 ml). Twenty-four hour chow intake also was increased compared with saline (AP5: 31.5 ± 0.1 g vs. saline: 27.1 ± 0.6 g). Furthermore, rats did not increase intake of 0.2% saccharin after fourth ventricular AP5 administration (AP5: 9.8 ± 0.7ml, vs. saline: 10.5 ± 0.5ml). Finally, NTS AP5 (20 ng/30 nl) significantly increased 30- (AP5: 17.2 ± 0.7 ml vs. saline: 14.6 ± 1.7 ml), and 60-min (AP5: 19.4 ± 0.6 ml vs. saline: 15.5 ± 1.4 ml) sucrose intake, as well as 24-h chow intake (AP5: 31.6 ± 0.3 g vs. saline: 26.1 ± 1.2 g). These results support the hypothesis that hindbrain NMDA receptors participate in control of food intake and suggest that this participation also may contribute to control of body weight over a 24-h period.


Author(s):  
Giselle Magalhães ◽  
Juliana Gregorio ◽  
Gabriela Nakashima ◽  
Arthur Ribeiro ◽  
Aline Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document