scholarly journals Resonant Effect for Breit–Wheeler Process in the Field of an X-ray Pulsar

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 190
Author(s):  
Vitalii D. Serov ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

The resonant process of the creation of an ultrarelativistic electron–positron pair by two hard gamma quanta in the field of an X-ray pulsar (the Breit–Wheeler process modified by an external field) was theoretically studied. Under resonance conditions, the intermediate virtual electron (positron) in the external field becomes a real particle. As a result, there are four reaction channels for the process instead of two. For each of those channels, the initial process of the second order in the fine structure constant in the field of an X-ray pulsar effectively reduces into two successive processes of the first order: X-ray-stimulated Breit–Wheeler process and X-ray-stimulated Compton effect. The resonant kinematics of the process was also studied in detail. The process had characteristic threshold energy, and all initial and final particles had to be ultrarelativistic and propagate in a narrow cone. Furthermore, the resonant energy spectrum of the electron-positron pair significantly depended on emission angles. Clearly, there was a qualitative difference between resonant and nonresonant cases. Lastly, the resonant differential probability of studied process was obtained. The resonant differential probability significantly exceeded the nonresonant one without the external field of an X-ray pulsar.

Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 137 ◽  
Author(s):  
Dmitriy V. Doroshenko ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

We investigated the effects that occur during the circulation of ultrarelativistic electrons and positrons in the field of an X-ray pulsar. A resonant process in annihilation and the subsequent production of the electron–positron pairs were studied theoretically. Under the resonance, the second-order process in an original fine-structure constant process effectively decays to two first order processes of the fine-structure constant: single-photon annihilation of the electron–positron pair stimulated by the external field, and the Breit–Wheeler process (single-photon birth of the electron–positron pair) stimulated by the external field. We show that resonance has a threshold energy for a certain combinational energy of the initial electron and positron. Furthermore, there is a definite small angle between initial ultrarelativistic particles’ momenta, in which resonance takes place. Initial and final electron–positron pairs fly in a narrow cone. We noticed that electron (positron) emission angle defines the energy of the final pair. We show that the resonant cross-section in the field of the X-ray pulsar may significantly exceed the corresponding cross-section without the field (Bhabha cross-section).


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 164
Author(s):  
Vadim A. Yelatontsev ◽  
Sergei P. Roshchupkin ◽  
Viktor V. Dubov

The process of a resonant production of an ultrarelativistic electron–positron pair in the process of gamma-quantum scattering in the X-ray field of a pulsar is theoretically studied. This process has two reaction channels. Under resonant conditions, an intermediate electron (for a channel A) or a positron (for a channel B) enters the mass shell. As a result, the initial second-order process of the fine-structure constant in the X-ray field effectively splits into two first-order processes: the X-ray field-stimulated Breit–Wheeler process and the the X-ray field-stimulated Compton effect on an intermediate electron or a positron. The resonant kinematics of the process is studied in detail. It is shown that for the initial gamma quantum there is a threshold energy, which for the X-ray photon energy (1–102) keV has the order of magnitude (103–10) MeV. In this case, all the final particles (electron, positron, and final gamma quantum) fly in a narrow cone along the direction of the initial gamma quantum momentum. It is important to note that the energies of the electron–positron pair and the final gamma quantum depend significantly on their outgoing angles. The obtained resonant probability significantly exceeds the non-resonant one. The obtained results can be used to explain the spectrum of positrons near pulsars.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 132 ◽  
Author(s):  
Georgii K. Sizykh ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

The process of resonant high-energy electron–positron pair production by an ultrarelativistic electron colliding with the field of an X-ray pulsar is theoretically investigated. Resonant kinematics of the process is studied in detail. Under the resonance condition, the intermediate virtual photon in the X-ray pulsar field becomes a real particle. As a result, the initial process of the second order in the fine structure constant effectively reduces into two successive processes of the first order: X-ray-stimulated Compton effect and X-ray-stimulated Breit–Wheeler process. For a high-energy initial electron all the final ultrarelativistic particles propagate in a narrow cone along the direction of the initial electron momentum. The presence of threshold energy for the initial electron which is of order of 100 MeV for 1-KeV-frequency field is shown. At the same time, the energy spectrum of the final particles (two electrons and a positron) highly depends on their exit angles and on the initial electron energy. This result significantly distinguishes the resonant process from the non-resonant one. It is shown that the resonant differential probability significantly exceeds the non-resonant one.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 141 ◽  
Author(s):  
Nikita R. Larin ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

The resonant photoproduction of the electron-positron pairs on a nucleus near a surface of the X-ray pulsar was studied theoretically. The main feature of the processes, which are responsible for the formation of the electron-positron fluxes, is a capability to occur in a resonant way in the electromagnetic field of the X-ray pulsar. One of the properties of the resonant case is that the initial process of second order in the fine structure constant in an external field effectively reduces into two successive processes of the first order due to the fact that in the resonant conditions intermediate virtual electron (positron) becomes a real particle. It is shown that the resonances are possible only when the initial gamma quantum energy is more than the threshold energy, which significantly depends on the number of absorbed photons of an external electromagnetic field. Additionally, in the resonant conditions, the energies of the particles depend on the outgoing angle of a positron (channel A) or an electron (channel B). It is shown that the resonant differential cross section has an extremely large magnitude in units αZ2re2. A mechanism to explain the presence of anomalous fluxes of ultrarelativistic positrons near the surface of an X-ray pulsar was proposed.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 210
Author(s):  
Georgii K. Sizykh ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

The process of resonant high-energy electron–positron pairs production by electrons in an X-ray pulsar electromagnetic field is studied theoretically. Under the resonance conditions, the second-order process under consideration effectively reduces into two sequential first-order processes: X-ray-stimulated Compton effect and X-ray–stimulated Breit–Wheeler process. The kinematics of the process is studied in detail: the dependencies of the energy of the scattered electron on its outgoing angle and the energies of the particles of the pair on the outgoing angle of the scattered electron and the opening angle of the pair are obtained. The analysis of the number of different possible particles energies values in the entire range of the angles is also carried out, according to which the energies of the particles of the pair can take up to eight different values at a fixed outgoing angle of the scattered electron and opening angle of the pair. The estimate of the resonant differential probability per unit time of the process, which reaches the maximum value of 24 orders of the value of the non-resonant differential probability per unit time, is obtained. The angular distribution of the differential probability per unit time of the process is analyzed, particularly for the case of high-energy positrons presenting in pulsar radiation.


2021 ◽  
Author(s):  
J. D. Fan ◽  
Jufu Tan

Abstract It is deduced that when an electron and a positron form a stable structure, the dimensionless speed of either of them, α = v/C, where C is speed of light, satisfies the so-called basic equation of α^2 - b α = 1 = 0, where b is the reciprocal of α, the fine structure constant of a hydrogen atom. One of solutions to the basic equation, the superluminal speed, α 1 = b = 137.036, represents a superluminal pair of electron and positron, in which there is the Lorentz force only while neglecting the Coulomb force between the two particles at an ultrahigh speed. Another solution stands for a positronium with a short-lived life time. The superluminal pair of electron and positron or superluminal electron-positron pair consists of an electron and a positron moving at a superluminal speed of and has a stable quantized energy system with quantized energy of E ̃_n=2m_0e υ ̃_n^2=nhV ̃_n where v = nbC with n being an integer, and is able to radiate and absorb rays of electrons and positrons with ultrahigh energy. The superluminal electron-positron pair may possibly be a particle of dark matter. A divided superluminal electron-positron pair on an energy level n can release electrons and positrons, moving at a superluminal speed of v = nbC, which may possibly be particles of dark energy as well. Therefore, we are led to conclude that there might exist quantized superluminal motions of electrons and positrons in the universe.


2020 ◽  
Vol 35 (03) ◽  
pp. 2040027 ◽  
Author(s):  
Alexander A. Pustyntsev ◽  
Victor V. Dubov ◽  
Sergei P. Roshchupkin

The contemporary research scrutinizes the resonant Breit-Wheeler process in the field of a plane monochromatic electromagnetic wave. Implementing the weak external field condition the processes of electron-positron pair production advances pre-eminently with participation of restrictively two field photons. Thus, within the resonant state the represented process effectively splits into two first-order processes with respect to the fine-structure constant. In details, the effect indicates the single photon pair production with consequent absorption of gamma quantum by an electron (positron) in the field of the wave. We analyze the resonance kinematics precisely. The study determines specific regions in which the interference of resonant amplitudes is absent. Additionally, the computation obtains a resonant differential cross section for the described areas. The corresponding resonant differential cross section significantly exceeds the correlating Breit-Wheeler cross-section without an external field. Various scientific facilities of pulsed laser radiation may experimentally verify the results of these calculations (SLAC, FAIR, XFEL, ELI, XCELS).


2002 ◽  
Vol 20 (1) ◽  
pp. 79-86 ◽  
Author(s):  
HEINRICH HORA ◽  
FREDERICK OSMAN ◽  
REYNALDO CASTILLO ◽  
MATTHEW COLLINS ◽  
TIMOTHY STAIT-GARDENER ◽  
...  

Laser-produced electron–positron pair production has been under discussion in the literature since 1969. Large numbers of positrons have been generated by lasers for a few years in studies which are also related to the studies of the physics of the fast ignitor laser fusion concept. For electron–positron pair production in vacuum due to vacuum polarization as predicted by Heisenberg (1934) with electrostatic fields, high-frequency laser fields with intensities around 1028 W/cm2 are necessary and may be available within a number of years. A similar electron acceleration by gravitation near black holes denoted as Hawking–Unruh radiation was discussed in 1985 by McDonald. The conditions are considered in view of the earlier work on pair production, change of statistics for electrons in relativistic black body radiation, and an Einstein recoil mechanism with a consequence of a physical foundation of the fine structure constant.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Geng ◽  
Y. F. Huang

The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs) challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.


Sign in / Sign up

Export Citation Format

Share Document