scholarly journals Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology

Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 241
Author(s):  
Jerónimo Cortez ◽  
Beatriz Elizaga Navascués ◽  
Guillermo A. Mena Marugán ◽  
Santiago Prado ◽  
José M. Velhinho

In generic curved spacetimes, the unavailability of a natural choice of vacuum state introduces a serious ambiguity in the Fock quantization of fields. In this review, we study the case of fermions described by a Dirac field in non-stationary spacetimes, and present recent results obtained by us and our collaborators about well-motivated criteria capable to ensure the uniqueness in the selection of a vacuum up to unitary transformations, at least in certain situations of interest in cosmology. These criteria are based on two reasonable requirements. First, the invariance of the vacuum under the symmetries of the Dirac equations in the considered spacetime. These symmetries include the spatial isometries. Second, the unitary implementability of the Heisenberg dynamics of the annihilation and creation operators when the curved spacetime is treated as a fixed background. This last requirement not only permits the uniqueness of the Fock quantization but, remarkably, it also allows us to determine an essentially unique splitting between the phase space variables assigned to the background and the fermionic annihilation and creation variables. We first consider Dirac fields in 2 + 1 dimensions and then discuss the more relevant case of 3 + 1 dimensions, particularizing the analysis to cosmological spacetimes with spatial sections of spherical or toroidal topology. We use this analysis to investigate the combined, hybrid quantization of the Dirac field and a flat homogeneous and isotropic background cosmology when the latter is treated as a quantum entity, and the former as a perturbation. Specifically, we focus our study on a background quantization along the lines of loop quantum cosmology. Among the Fock quantizations for the fermionic perturbations admissible according to our criteria, we discuss the possibility of further restricting the choice of a vacuum by the requisite of a finite fermionic backreaction and, moreover, by the diagonalization of the fermionic contribution to the total Hamiltonian in the asymptotic limit of large wave numbers of the Dirac modes. Finally, we argue in support of the uniqueness of the vacuum state selected by the extension of this diagonalization condition beyond the commented asymptotic region, in particular proving that it picks out the standard Poincaré and Bunch–Davies vacua for fixed flat and de Sitter background spacetimes, respectively.

2018 ◽  
Vol 16 (04) ◽  
pp. 449-524
Author(s):  
Alexei Iantchenko

We provide the full asymptotic description of the quasi-normal modes (resonances) in any strip of fixed width for Dirac fields in slowly rotating Kerr–Newman–de Sitter black holes. The resonances split in a way similar to the Zeeman effect. The method is based on the extension to Dirac operators of techniques applied by Dyatlov in [Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole, Commun. Math. Phys. 306(1) (2011) 119–163; Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes, Ann. Henri Poincaré 13(5) (2012) 1101–1166] to the (uncharged) Kerr–de Sitter black holes. We show that the mass of the Dirac field does not have an effect on the two leading terms in the expansions of resonances. We give an expansion of the solution of the evolution equation for the Dirac fields in the outer region of the slowly rotating Kerr–Newman–de Sitter black hole which implies the exponential decay of the local energy. Moreover, using the [Formula: see text]-normal hyperbolicity of the trapped set and applying the techniques from [Asymptotics of linear waves and resonances with applications to black holes, Commun. Math. Phys. 335 (2015) 1445–1485; Resonance projectors and asymptotics for [Formula: see text]-normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015) 311–381], we give location of the resonance free band and the Weyl-type formula for the resonances in the band near the real axis.


2018 ◽  
Vol 121 (8) ◽  
Author(s):  
Mehdi Assanioussi ◽  
Andrea Dapor ◽  
Klaus Liegener ◽  
Tomasz Pawłowski

Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 98 ◽  
Author(s):  
Beatriz Elizaga Navascués ◽  
Daniel Martín de Blas ◽  
Guillermo Mena Marugán

We investigate the role played by the vacuum of the primordial fluctuations in hybrid Loop Quantum Cosmology. We consider scenarios where the inflaton potential is a mass term and the unperturbed quantum geometry is governed by the effective dynamics of Loop Quantum Cosmology. In this situation, the phenomenologically interesting solutions have a preinflationary regime where the kinetic energy of the inflaton dominates over the potential. For these kind of solutions, we show that the primordial power spectra depend strongly on the choice of vacuum. We study in detail the case of adiabatic states of low order and the non-oscillating vacuum introduced by Martín de Blas and Olmedo, all imposed at the bounce. The adiabatic spectra are typically suppressed at large scales, and display rapid oscillations with an increase of power at intermediate scales. In the non-oscillating vacuum, there is power suppression for large scales, but the rapid oscillations are absent. We argue that the oscillations are due to the imposition of initial adiabatic conditions in the region of kinetic dominance, and that they would also be present in General Relativity. Finally, we discuss the sensitivity of our results to changes of the initial time and other data of the model.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050247
Author(s):  
Surajit Chattopadhyay ◽  
Martiros Khurshudyan ◽  
K. Myrzakulov ◽  
Antonio Pasqua ◽  
Ratbay Myrzakulov

In this paper, we study the main cosmological properties of the classical Friedmann equations in the case of homogeneous and isotropic Friedmann–Robertson–Walker Universe and we also generalized the expression of the Friedmann equation in the case of Loop Quantum Cosmology (LQC). Considering the [Formula: see text]-model, we found the solutions of the equations considered for two particular cases, i.e. [Formula: see text] (i.e. the de Sitter solution) and [Formula: see text]. Moreover, we considered and studied two exact cosmological solutions of the [Formula: see text]-model, in particular the power-law and the exponential ones. Moreover, we also considered a third more complicated case and we derived the solution for an arbitrary function of the time [Formula: see text]. A scalar field description of the model is presented by constructing its self-interacting potential.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Alexander Burinskii

The Dirac electron is considered as a particle-like solution consistent with its own Kerr–Newman (KN) gravitational field. In our previous works we considered the regularized by López KN solution as a bag-like soliton model formed from the Higgs field in a supersymmetric vacuum state. This bag takes the shape of a thin superconducting disk coupled with circular string placed along its perimeter. Using the unique features of the Kerr–Schild coordinate system, which linearizes Dirac equation in KN space, we obtain the solution of the Dirac equations consistent with the KN gravitational and electromagnetic field, and show that the corresponding solution takes the form of a massless relativistic string. Obvious parallelism with Heisenberg and Schrödinger pictures of quantum theory explains remarkable features of the electron in its interaction with gravity and in the relativistic scattering processes.


2008 ◽  
Vol 78 (6) ◽  
Author(s):  
Abhay Ashtekar ◽  
Edward Wilson-Ewing

Sign in / Sign up

Export Citation Format

Share Document