scholarly journals Jet-Induced Feedback in the [O III] Lines of Early Evolution Stage Active Galactic Nuclei

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 188
Author(s):  
Marco Berton ◽  
Emilia Järvelä

It is well known that active galactic nuclei (AGN) show various forms of interaction with their host galaxy, in a number of phenomena generally called AGN feedback. In particular, the relativistic plasma jets launched by a fraction of AGN can strongly affect their environment. We present here a study of the [O III] λλ4959,5007 lines in a diverse sample of early evolution stage AGN–specifically narrow-line Seyfert 1 galaxies. Radio imaging observations of all of the sources enable a division to jetted and non-jetted sources, and exploiting this we show that the ionized gas properties are significantly influenced by the presence of the jets, as we often find the [O III] lines (blue-)shifted with respect to their restframe wavelength. We also show how the radio morphology and the radio spectral index do not seem to play a role in the origin of the [O III] shifts, thus suggesting that the source inclination is not relevant to the lines displacement. We do not find a strong relation between the [O III] line properties and the bolometric luminosity, suggesting that within our sample radiatively driven outflows do not seem to have a significant contribution to the [O III] line kinematics. We finally suggest that [O III] shifts may be a good proxy to identify the presence of relativistic jets. Additional studies, especially with integral-field spectroscopy, will provide a deeper insight into the relation between jets and their environment in early evolution stage AGN.

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 42
Author(s):  
Claudia M. Raiteri ◽  
Massimo Villata

Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called “blazars”. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the γ-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies.


Author(s):  
L. Koutoulidis ◽  
G. Mountrichas ◽  
I. Georgantopoulos ◽  
E. Pouliasis ◽  
M. Plionis

2019 ◽  
Vol 632 ◽  
pp. A88
Author(s):  
V. Allevato ◽  
A. Viitanen ◽  
A. Finoguenov ◽  
F. Civano ◽  
H. Suh ◽  
...  

Aims. We perform clustering measurements of 800 X-ray selected Chandra COSMOS Legacy (CCL) Type 2 active galactic nuclei (AGN) with known spectroscopic redshift to probe the halo mass dependence on AGN host galaxy properties, such as galaxy stellar mass Mstar, star formation rate (SFR), and specific black hole accretion rate (BHAR; λBHAR) in the redshift range z = [0−3]. Methods. We split the sample of AGN with known spectroscopic redshits according to Mstar, SFR and λBHAR, while matching the distributions in terms of the other parameters, including redshift. We measured the projected two-point correlation function wp(rp) and modeled the clustering signal, for the different subsamples, with the two-halo term to derive the large-scale bias b and corresponding typical mass of the hosting halo. Results. We find no significant dependence of the large-scale bias and typical halo mass on galaxy stellar mass and specific BHAR for CCL Type 2 AGN at mean z ∼ 1, while a negative dependence on SFR is observed, i.e. lower SFR AGN reside in richer environment. Mock catalogs of AGN, matched to have the same X-ray luminosity, stellar mass, λBHAR, and SFR of CCL Type 2 AGN, almost reproduce the observed Mstar − Mh, λBHAR − Mh and SFR–Mh relations, when assuming a fraction of satellite AGN fAGNsat ∼ 0.15. This corresponds to a ratio of the probabilities of satellite to central AGN of being active Q ∼ 2. Mock matched normal galaxies follow a slightly steeper Mstar − Mh relation, in which low mass mock galaxies reside in less massive halos than mock AGN of similar mass. Moreover, matched mock normal galaxies are less biased than mock AGN with similar specific BHAR and SFR, at least for Q >  1.


2018 ◽  
Vol 618 ◽  
pp. A68 ◽  
Author(s):  
S. Frey ◽  
O. Titov ◽  
A. E. Melnikov ◽  
P. de Vicente ◽  
F. Shu

Context. Radio-loud active galactic nuclei in the early Universe are rare. The quasars J0906+6930 at redshift z = 5.47 and J2102+6015 at z = 4.57 stand out from the known sample with their compact emission on milliarcsecond (mas) angular scale with high (0.1 Jy level) flux densities measured at GHz radio frequencies. This makes them ideal targets for very long baseline interferometry (VLBI) observations. Aims. By means of VLBI imaging we can reveal the inner radio structure of quasars and model their brightness distribution to better understand the geometry of the jet and the physics of the sources. Methods. We present sensitive high-resolution VLBI images of J0906+6930 and J2102+6015 at two observing frequencies, 2.3 and 8.6 GHz. The data were taken in an astrometric observing programme involving a global five-element radio telescope array. We combined the data from five different epochs from 2017 February to August. Results. For one of the highest redshift blazars known, J0906+6930, we present the first-ever VLBI image obtained at a frequency below 8 GHz. Based on our images at 2.3 and 8.6 GHz, we confirm that this source has a sharply bent helical inner jet structure within ∼3 mas from the core. The quasar J2102+6015 shows an elongated radio structure in the east–west direction within the innermost ∼2 mas that can be described with a symmetric three-component brightness distribution model at 8.6 GHz. Because of their non-pointlike mas-scale structure, these sources are not ideal as astrometric reference objects. Our results demonstrate that VLBI observing programmes conducted primarily with astrometric or geodetic goals can be utilized for astrophysical purposes as well.


2020 ◽  
Vol 494 (3) ◽  
pp. 3616-3626 ◽  
Author(s):  
Mariko Nomura ◽  
Ken Ohsuga ◽  
Chris Done

ABSTRACT Based on recent X-ray observations, ultrafast outflows from supermassive black holes are expected to have enough energy to dramatically affect their host galaxy but their launch and acceleration mechanisms are not well understood. We perform two-dimensional radiation hydrodynamics simulations of UV line-driven disc winds in order to calculate the mass-loss rates and kinetic power in these models. We develop a new iterative technique that reduces the mass accretion rate through the inner disc in response to the wind mass-loss. This makes the inner disc less UV bright, reducing the wind power compared to previous simulations which assumed a constant accretion rate with radius. The line-driven winds in our simulations are still extremely powerful, with around half the supplied mass accretion rate being ejected in the wind for black holes with mass 108–$10^{10}\, \mathrm{ M}_\odot$ accreting at L/LEdd = 0.5–0.9. Our results open up the way for estimating the growth rate of supermassive black hole and evaluating the kinetic energy ejected into the interstellar medium (active galactic nuclei feedback) based on a physical model of line-driven disc winds.


1989 ◽  
Vol 134 ◽  
pp. 233-239
Author(s):  
R. D. Blandford

The observed evolutionary behavior of active galactic nuclei is compatible with a model in which black holes form in the nuclei of new-born galaxies and then grow at a rate limited by both radiation pressure and the supply of gas. Individual sources become more luminous with time as long as they are being fueled. However, the rapid decrease in the mean rate of supply of gas causes a strong decline in the space density of active objects. Nearby galaxies should harbor modest size (∼ 106 – 108 M⊙) black holes. It is suggested that the gas that fuels high redshift quasars is mostly derived from the host galaxy.


2010 ◽  
Vol 721 (1) ◽  
pp. L38-L42 ◽  
Author(s):  
Carolin N. Cardamone ◽  
C. Megan Urry ◽  
Kevin Schawinski ◽  
Ezequiel Treister ◽  
Gabriel Brammer ◽  
...  

2014 ◽  
Vol 28 ◽  
pp. 1460192
Author(s):  
VOLKER GAIBLER

Considerable asymmetries in jets from active galactic nuclei (AGN) and associated double radio sources can be caused by an inhomogeneous interstellar medium of the host galaxy. These asymmetries can easily be estimated by 1D propagation models, but hydrodynamical simulations have shown that the actual asymmetries can be considerably larger. With a set of smaller-scale hydrodynamical simulations we examine these asymmetries, and find they are typically a factor of ~ 3 larger than in 1D models. We conclude that, at high redshift, large asymmetries in radio sources are expected in gas-rich galaxies with a clumpy interstellar medium.


2012 ◽  
Vol 755 (1) ◽  
pp. 5 ◽  
Author(s):  
A. D. Goulding ◽  
D. M. Alexander ◽  
F. E. Bauer ◽  
W. R. Forman ◽  
R. C. Hickox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document