scholarly journals ASYMMETRIES OF AGN JETS IN INHOMOGENEOUS MEDIA

2014 ◽  
Vol 28 ◽  
pp. 1460192
Author(s):  
VOLKER GAIBLER

Considerable asymmetries in jets from active galactic nuclei (AGN) and associated double radio sources can be caused by an inhomogeneous interstellar medium of the host galaxy. These asymmetries can easily be estimated by 1D propagation models, but hydrodynamical simulations have shown that the actual asymmetries can be considerably larger. With a set of smaller-scale hydrodynamical simulations we examine these asymmetries, and find they are typically a factor of ~ 3 larger than in 1D models. We conclude that, at high redshift, large asymmetries in radio sources are expected in gas-rich galaxies with a clumpy interstellar medium.

1989 ◽  
Vol 134 ◽  
pp. 233-239
Author(s):  
R. D. Blandford

The observed evolutionary behavior of active galactic nuclei is compatible with a model in which black holes form in the nuclei of new-born galaxies and then grow at a rate limited by both radiation pressure and the supply of gas. Individual sources become more luminous with time as long as they are being fueled. However, the rapid decrease in the mean rate of supply of gas causes a strong decline in the space density of active objects. Nearby galaxies should harbor modest size (∼ 106 – 108 M⊙) black holes. It is suggested that the gas that fuels high redshift quasars is mostly derived from the host galaxy.


2011 ◽  
Vol 736 (1) ◽  
pp. 55 ◽  
Author(s):  
Ray P. Norris ◽  
Jose Afonso ◽  
Antonio Cava ◽  
Duncan Farrah ◽  
Minh T. Huynh ◽  
...  

2019 ◽  
Vol 623 ◽  
pp. A172 ◽  
Author(s):  
C. Circosta ◽  
C. Vignali ◽  
R. Gilli ◽  
A. Feltre ◽  
F. Vito ◽  
...  

We present a multiwavelength study of seven active galactic nuclei (AGN) at spectroscopic redshift >2.5 in the 7 Ms Chandra Deep Field South that were selected for their good far-infrared (FIR) and submillimeter (submm) detections. Our aim is to investigate the possibility that the obscuration observed in the X-rays can be produced by the interstellar medium (ISM) of the host galaxy. Based on the 7 Ms Chandra spectra, we measured obscuring column densities NH,  X in excess of 7 × 1022 cm−2 and intrinsic X-ray luminosities LX >  1044 erg s−1 for our targets, as well as equivalent widths for the Fe Kα emission line EWrest ≳ 0.5−1 keV. We built the UV-to-FIR spectral energy distributions (SEDs) by using broadband photometry from the CANDELS and Herschel catalogs. By means of an SED decomposition technique, we derived stellar masses (M* ∼ 1011 M⊙), IR luminosities (LIR >  1012 L⊙), star formation rates (SFR ∼ 190−1680 M⊙ yr−1) and AGN bolometric luminosities (Lbol ∼ 1046 erg s−1) for our sample. We used an empirically calibrated relation between gas masses and FIR/submm luminosities and derived Mgas ∼ 0.8−5.4 × 1010 M⊙. High-resolution (0.3−0.7″) ALMA data (when available, CANDELS data otherwise) were used to estimate the galaxy size and hence the volume enclosing most of the ISM under simple geometrical assumptions. These measurements were then combined to derive the column density associated with the ISM of the host, which is on the order of NH,  ISM ∼ 1023−24 cm−2. The comparison between the ISM column densities and those measured from the X-ray spectral analysis shows that they are similar. This suggests that at least at high redshift, significant absorption on kiloparsec scales by the dense ISM in the host likely adds to or substitutes that produced by circumnuclear gas on parsec scales (i.e., the torus of unified models). The lack of unobscured AGN among our ISM-rich targets supports this scenario.


1997 ◽  
Vol 159 ◽  
pp. 280-287
Author(s):  
A. Robinson

AbstractHigh-excitation extended emission-line nebulae around active galactic nuclei probably result either from photoionization of the interstellar medium by beamed continuum radiation, or dynamical interactions between radio sources and the ambient gas, or both. Here I discuss the models based on these mechanisms, and their relative importance in radio-quiet and radio-loud active galaxies.


2021 ◽  
Vol 923 (1) ◽  
pp. 31
Author(s):  
Sumit K. Sarbadhicary ◽  
Evangelia Tremou ◽  
Adam J. Stewart ◽  
Laura Chomiuk ◽  
Charee Peters ◽  
...  

Abstract Although it is well established that some extragalactic radio sources are time-variable, the properties of this radio variability, and its connection with host galaxy properties, remain to be explored—particularly for faint sources. Here we present an analysis of radio variable sources from the CHILES Variable and Explosive Radio Dynamic Evolution Survey (CHILES VERDES)—a partner project of the 1.4 GHz COSMOS H i Large Extragalactic Survey. CHILES VERDES provides an unprecedented combination of survey depth, duration, and cadence, with 960 hr of 1–2 GHz continuum VLA data obtained over 209 epochs between 2013 and 2019 in a 0.44 deg2 section of the well-studied extragalactic deep field, COSMOS. We identified 18 moderate-variability sources (showing 10%–30% flux density variation) and 40 lower-variability sources (2%–10% flux density variation). They are mainly active galactic nuclei (AGNs) with radio luminosities in the range of 1022–1027 W Hz−1, based on cross-matching with COSMOS multiwavelength catalogs. The moderate-variability sources span redshifts z = 0.22–1.56, have mostly flat radio spectra (α > −0.5), and vary on timescales ranging from days to years. The lower-variability sources have similar properties, but generally have higher radio luminosities than the moderate-variability sources, extending to z = 2.8, and have steeper radio spectra (α < −0.5). No star-forming galaxy showed statistically significant variability in our analysis. The observed variability likely originates from scintillation on short (∼week) timescales, and Doppler-boosted intrinsic AGN variability on long (month–year) timescales.


1984 ◽  
Vol 78 ◽  
pp. 443-456
Author(s):  
C. Barbieri

The role of the Schmidt telescopes in the discovery of the Quasi Stellar Objects and of the Active Galactic Nuclei, and in the understanding of their properties was and continues to be of the greatest importance. Thousands of Radio-Sources have been quickly associated to their optical counterparts thanks to the worldwide availability of the Palomar Observatory Sky Survey plates and charts and more recently of the films of the ESO B Survey. Other thousands of QSOs and AGNs devoid of radio emission are found by the large Schmidts nowaday in operation. This wealth of data give fundamental cosmological knowledge and insight in the physical processes occuring in these objects. I'll concentrate in this Review on two specific topics, namely on the discovery techniques and on the study of the optical variability. To both subjects, the 67/92 cm Schmidt telescope here at Asiago has made significant contributions. The first topic is treated in several excellent papers, such as the one by M. Smith (1978) and the one by P. Veron (1983); the material presented in the second part is largely new. In the following, I'll use rather loosely the terms QSOs and AGNs to designate a variety of objects including Quasars (those QSOs in catalogs of Radio-Sources), high-redshift compact galaxies with emission lines, BL LACset similia.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 188
Author(s):  
Marco Berton ◽  
Emilia Järvelä

It is well known that active galactic nuclei (AGN) show various forms of interaction with their host galaxy, in a number of phenomena generally called AGN feedback. In particular, the relativistic plasma jets launched by a fraction of AGN can strongly affect their environment. We present here a study of the [O III] λλ4959,5007 lines in a diverse sample of early evolution stage AGN–specifically narrow-line Seyfert 1 galaxies. Radio imaging observations of all of the sources enable a division to jetted and non-jetted sources, and exploiting this we show that the ionized gas properties are significantly influenced by the presence of the jets, as we often find the [O III] lines (blue-)shifted with respect to their restframe wavelength. We also show how the radio morphology and the radio spectral index do not seem to play a role in the origin of the [O III] shifts, thus suggesting that the source inclination is not relevant to the lines displacement. We do not find a strong relation between the [O III] line properties and the bolometric luminosity, suggesting that within our sample radiatively driven outflows do not seem to have a significant contribution to the [O III] line kinematics. We finally suggest that [O III] shifts may be a good proxy to identify the presence of relativistic jets. Additional studies, especially with integral-field spectroscopy, will provide a deeper insight into the relation between jets and their environment in early evolution stage AGN.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


Sign in / Sign up

Export Citation Format

Share Document