scholarly journals Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

Viruses ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 441-459 ◽  
Author(s):  
Jie He ◽  
Andrea Kraft ◽  
Jiang Fan ◽  
Meredith Van Dyke ◽  
Lihua Wang ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4554-4554
Author(s):  
Charlotte Guldborg Nyvold ◽  
Knud Bendix ◽  
Stephen J. Hamilton-Dutoit ◽  
Dorte Melsvik ◽  
Hanne Tønder ◽  
...  

Abstract Aim: To develop a multiplex PCR method applicable in a clinical setting for the simultaneous detection of the chromosomal lesions t(11;14)(q13q32), t(14;18)(q32;q21), t(2;5)(p23;q35), t(11;18)(q21;q21), t(3q27;var), and t(8;14)(q24;q32) frequently found in non-Hodgkin lymphoma (NHL). Methods: DNA and RNA were prepared from 50μm lymph node (LN) sections by homogenization on a FastPrep instrument (Qbiogene, Cedex, France) followed by automated nucleic acid purification on a MagNa-Pure LC robot (Roche Diagnostics, Basel, Switzerland). The multiplex PCR was condensed in four PCR tubes. The first covered the MTC and mTCp94 region of BCL1/IGH fusion DNA, the MBR and MCR breakpoint regions of BCL2/IGH fusion DNA together with the control gene TCF20. The second included the API2/MLT and ALK/NPM breakpoints on cDNA along with β-ACTIN as a control gene. The third contained primers amplifying eight different fusions partners of BCL6 (IGH (14q32), IGL (22q11), HSP89α (14q32), HSP90β (6p12), PIM1 (6p21), TFR (3q26), TTF (4p13), and H4 (6p21)) on cDNA together with β-ACTIN as the control gene. The fourth tube harbored a long range PCR with primers detecting the CMYC/IGH breakpoints on genomic DNA (Cμ, Cγ, Cα, and joining region of the IGH (Basso et al., 1999, Am J Pathology)) together with ABL as a control gene. Patient samples and cell lines: One-hundred-and-twelve LN biopsies frozen in Tissue-Tek OCT Compound (Sakura, Vaerloese, Denmark) were randomly selected from consecutive patients referred with suspected hematological malignancy. The following cell lines were used as positive controls: B-CLL line JVM-2 (t(11;14)+), NHL lines DOHH-2 (t(14;18)+, t(8;14)+) and WSU-NHL (t(14;18)+), Burkitt’s lymphoma lines BL-41, BL-70 (t(8;14)+), and MD901 (t(3;22)+), T-NHL line Karpas 299 (t(2;5)+), and ALL line MD903 (t(3;14)+). Results: In pilot experiments employing cell lines and fresh LN material, this optimized multiplex PCR reaction proved to be simple and fast with a short turnover time, considering the large number of genetic aberrations detected. In a retrospective LN material encompassing 112 blinded samples, BCL1/IGH fusion DNA with breakpoint in the MTC region was detected once while BCL2/IGH was found in 20 samples (19 in MBR and one in MCR). BCL6/IGH fusion cDNA was found in three samples while the TTF gene was utilized twice as translocation partner to BCL6. Finally, CMYC/IGH fusion DNA was detected three times (1 IGHCα, 2 IGHCγ). All PCR products apart from CMYC/IGH were sequenced and verified the specific chromosomal lesions. Nineteen were excluded due to weak control bands in the first three PCR tubes, while 38 were excluded in the long range PCR detecting CMYC/IGH. Conclusion: We conclude that the NHL multiplex PCR described is an easy and timesaving method for identifying heterogeneous molecular disease markers in NHL. The standardized DNA- and RNA preparation together with the condensation into four PCR tubes, moreover, makes it convenient to the clinical setting. Application of this assay and identification of positive cases has the added advantage that quantitative real-time PCR monitoring residual disease can be applied.


2009 ◽  
Vol 160 (1-2) ◽  
pp. 210-214 ◽  
Author(s):  
Hirohito Ogawa ◽  
Osamu Taira ◽  
Takuya Hirai ◽  
Hiromi Takeuchi ◽  
Aki Nagao ◽  
...  

2012 ◽  
Vol 183 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Xin-Gang Xu ◽  
Guang-Da Chen ◽  
Yong Huang ◽  
Li Ding ◽  
Zhao-Cai Li ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


Author(s):  
Katarzyna Trzmiel

AbstractBrome mosaic virus (BMV) and cocksfoot mottle virus (CfMV) are pathogens of grass species including all economically important cereals. Both viruses have been identified in Poland therefore they create a potential risk to cereal crops. In this study, a duplex—reverse transcription—polymerase chain reaction (duplex-RT-PCR) was developed and optimized for simultaneous detection and differentiation of BMV and CfMV as well as for confirmation of their co-infection. Selected primers CfMVdiag-F/CfMVdiag-R and BMV2-F/BMV2-R amplified 390 bp and 798 bp RT-PCR products within coat protein (CP) region of CfMV and replicase gene of BMV, respectively. Duplex-RT-PCR was successfully applied for the detection of CfMV-P1 and different Polish BMV isolates. Moreover, one sample was found to be co-infected with BMV-ML1 and CfMV-ML1 isolates. The specificity of generated RT-PCR products was verified by sequencing. Duplex-RT-PCR, like conventional RT-PCR, was able to detect two viruses occurring in plant tissues in very low concentration (as low as 4.5 pg/µL of total RNA). In contrast to existing methods, newly developed technique offers a significant time and cost-saving advantage. In conclusion, duplex-RT-PCR is a useful tool which can be implemented by phytosanitary services to rapid detection and differentiation of BMV and CfMV.


2013 ◽  
Vol 189 (2) ◽  
pp. 277-282 ◽  
Author(s):  
Yong Yan ◽  
Heng-hui Wang ◽  
Lei Gao ◽  
Ji-mei Ji ◽  
Zhi-jie Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document