scholarly journals Dendritic Cell Targeting of Bovine Viral Diarrhea Virus E2 Protein Expressed by Lactobacillus casei Effectively Induces Antigen-Specific Immune Responses via Oral Vaccination

Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 575 ◽  
Author(s):  
Yixin Wang ◽  
Baohua Feng ◽  
Chao Niu ◽  
Shuo Jia ◽  
Chao Sun ◽  
...  

Bovine viral diarrhea caused by bovine viral diarrhea virus (BVDV) is an important disease in cattle, resulting in significant economic losses to the cattle industry worldwide. In order to develop an effective vaccine against BVDV infection, we constructed a dendritic cell (DC)-targeting oral probiotic vaccine (pPG-E2-DCpep/LC W56) using Lactobacillus casei as antigen delivery carrier to express BVDV glycoprotein E2 fused with DC-targeting peptide, and the immunogenicity of orally administered probiotic vaccine was evaluated in mice model. Our results showed that after immunization with the probiotic vaccine, significantly levels of antigen-specific sera IgG and mucosal sIgA antibodies (p < 0.05) with BVDV-neutralizing activity were induced in vivo. Challenge experiment showed that pPG-E2-DCpep/LC W56 can provide effective immune protection against BVDV, and BVDV could be effectively cleared from the intestine of immunized mice post-challenge. Moreover, the pPG-E2-DCpep/LC W56 could efficiently activate DCs in the intestinal Peyer’s patches, and significantly levels of lymphoproliferative responses, Th1-associated IFN-γ, and Th2-associated IL-4 were observed in mice immunized with pPG-E2-DCpep/LC W56 (p < 0.01). Our results clearly demonstrate that the probiotic vaccine could efficiently induce anti-BVDV mucosal, humoral, and cellular immune responses via oral immunization, indicating a promising strategy for the development of oral vaccine against BVDV.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Yu Deng ◽  
Silu Wang ◽  
Runxia Liu ◽  
Guiying Hao

Bovine viral diarrhea virus (BVDV) affects cows, pigs, sheep, goats, and other ruminants, as well as some wild animals. BVDV causes considerable economic losses every year and many countries have developed programs aimed at the eradication of this disease. The genetic diversity of BVDV in diseased goats has never been described in southwestern China. Thus, in this study, we applied antigen-capture ELISA and RT-PCR to survey the infection rate of BVDV in diseased goats in this region. Our results demonstrated that the average BVDV infection rate in goats was 17.51%, with all positive samples indicating infection by BVDV-1 and not BVDV-2, BVDV-3, or Border disease virus. The molecular characteristics of the 5′-untranslated region (5′-UTR) of BVDV-1 were recognized as belonging predominantly to the BVDV-1a, 1b, 1c, 1m, and 1p subtypes. BVDV-1b and 1m were the most abundant subtypes identified in this region, similar to the BVDV epidemics in cattle in other regions of China. This is the first study that describes the genetic characterization of BVDV in sick goats from southwestern China and is important for future studies and control programs.


2008 ◽  
Vol 20 (1) ◽  
pp. 156 ◽  
Author(s):  
A. Bielanski ◽  
J. Algire ◽  
A. Lalonde

Bovine viral diarrhea virus (BVDV) infection affects cattle throughout the world. It causes significant economic losses in the cattle industry. The potential for transmission of a cytopathic biotype of BVDV by in vivo-derived embryos has been thought to be negligible. However, there is no study to prove non-transmission of the most common field isolate of noncytopathic biotype (NCPB) of BVDV by IVF embryos. Here we report on the preliminary outcome of embryo transfer (ET) of IVF embryos exposed in vitro to type-1 (NY-1) and type-2 (P-131) genotypes of NCPB of BVDV. For this experiment, IVF embryos were generated using standard methods which briefly involve: maturation of cumulus–oocyte complexes in TCM medium, fertilization of oocytes with BVDV-free semen, and culture of zygotes to the blastocyst stage in SOF medium without somatic cells. Day 7 blastocysts were exposed for 1 h to NY-1 or P-131 (103–107 TCID50 mL–1) BVDV strains before being washed (without trypsin) as recommended by IETS. Two embryos were transferred on each occasion. Embryo recipients were virus-free and anti-BVDV antibody-free prior to ET. The recipients remained individually in isolation premises after ET. In total, 126 ET procedures were performed resulting in 57 pregnancies and 34 calves born free of the infectious virus and BVDV antibodies (5 pregnancies are still pending). In total, 23 pregnancies were lost after 30 days. Exposure of embryos to type-2 BVDV resulted in a loss of 46% (17/37) of pregnancies after 30 days post-ET and 20 recipients seroconverted to BVDV. Within seroconverted and pregnant animals (n = 14), only 2 recipients maintained pregnancy and delivered uninfected calves at term. In contrast, exposure of embryos to type-1 caused 30% (6/20) of the pregnancy losses after 30 days and did not cause any seroconversion in ET recipients. After washing, 33% (3/9) and 38% (17/44) single embryos from the infected pool of IVF embryos tested positive for the BVDV. In conclusion, under these experimental conditions, a proportion of recipients was apparently infected after receipt of BVDV-exposed embryos. However, all of the calves that survived to term were BVDV-free and anti-BVDV antibody free.


2006 ◽  
Vol 87 (10) ◽  
pp. 2971-2982 ◽  
Author(s):  
Rong Liang ◽  
Jan V. van den Hurk ◽  
Lorne A. Babiuk ◽  
Sylvia van Drunen Littel-van den Hurk

The objective of this study was to develop an optimal vaccination strategy for Bovine viral diarrhea virus (BVDV). The E2 protein of BVDV plays a major protective role against BVDV infection. In order to be able to compare DNA, protein and DNA prime–protein boost regimens, a plasmid was constructed encoding a secreted form of the NADL strain E2 protein (pMASIA-tPAsΔE2). Furthermore, a pure secreted recombinant ΔE2 (rΔE2) protein was produced. The rΔE2 protein was formulated with a combination of Emulsigen and CpG oligodeoxynucleotide. Groups of calves were immunized with pMASIA-tPAsΔE2 or with rΔE2, or first with pMASIA-tPAsΔE2 and then with rΔE2. To evaluate the protection against BVDV, calves were challenged with BVDV strain NY-1 after the last immunization. Although all immunized calves developed humoral and cellular immune responses, the antibody responses in the DNA prime–protein boost group were stronger than those elicited by either the DNA vaccine or the protein vaccine. In particular, E2-specific antibody titres were enhanced significantly after boosting the ΔE2 DNA-primed calves with rΔE2 protein. Moreover, protection against BVDV challenge was obtained in the calves treated with the DNA prime–protein boost vaccination regimen, as shown by a significant reduction in weight loss, viral excretion and lymphopenia, compared with the unvaccinated calves and the animals immunized with the DNA or protein only. These results demonstrate the advantage of a DNA prime–protein boost vaccination approach in an outbred species.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2431
Author(s):  
Yusuke Goto ◽  
Gakuji Yaegashi ◽  
Kazuhiro Fukunari ◽  
Tohru Suzuki

Bovine viral diarrhea virus (BVDV) infection results in a wide variety of clinical manifestations and is a pathogen that is able to cause huge economic losses in the cattle industry worldwide. It is important to identify cattle that are persistently infected (PI) by BVDV within the herd as early as possible because PI animals are the main reservoir of the virus. In contrast, cattle who are acutely infected (AI) with BVDV show various clinical signs, but most cattle show either mild symptoms or are asymptomatic. In general, AI and PI animals can be distinguished by repeat testing within an interval of at least 21 days. However, we found a rare case of a BVDV2-infected AI animal with long-term viral presence, making it indistinguishable from PI through two tests within an interval of 21 days. As a result, we diagnosed one infected animal as AI after 35 days from the initial sample collection via multiple analyses. Our findings recommend performing an additional test using samples that have been collected after 14–21 days from the second sample collection in cases where it is difficult to accurately differentiate an AI diagnosis from a PI diagnosis after only two tests. Additionally, our analysis exhibits that monitoring the number of copies of viruses with similar genomes in the sera by means of quantitative real-time RT-PCR through several sample collections periods might be useful to distinguish AI from PI. Furthermore, our data suggest that the AI animals with a long-term viral presence who show test results similar to those of PI animals might be the result of a coincidental combination of various factors that are present in cattle fields. These findings provide useful information that can be used to improve the diagnosis of BVDV in the field.


Sign in / Sign up

Export Citation Format

Share Document