scholarly journals Interaction of Human ACE2 to Membrane-Bound SARS-CoV-1 and SARS-CoV-2 S Glycoproteins

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1104 ◽  
Author(s):  
Sai Priya Anand ◽  
Yaozong Chen ◽  
Jérémie Prévost ◽  
Romain Gasser ◽  
Guillaume Beaudoin-Bussières ◽  
...  

Severe acute respiratory syndrome virus 2 (SARS-CoV-2) is responsible for the current global coronavirus disease 2019 (COVID-19) pandemic, infecting millions of people and causing hundreds of thousands of deaths. The viral entry of SARS-CoV-2 depends on an interaction between the receptor-binding domain of its trimeric spike glycoprotein and the human angiotensin-converting enzyme 2 (ACE2) receptor. A better understanding of the spike/ACE2 interaction is still required to design anti-SARS-CoV-2 therapeutics. Here, we investigated the degree of cooperativity of ACE2 within both the SARS-CoV-2 and the closely related SARS-CoV-1 membrane-bound S glycoproteins. We show that there exist differential inter-protomer conformational transitions between both spike trimers. Interestingly, the SARS-CoV-2 spike exhibits a positive cooperativity for monomeric soluble ACE2 binding when compared to the SARS-CoV-1 spike, which might have more structural restraints. Our findings can be of importance in the development of therapeutics that block the spike/ACE2 interaction.

2020 ◽  
Author(s):  
Sai Priya Anand ◽  
Yaozong Chen ◽  
Jérémie Prévost ◽  
Romain Gasser ◽  
Guillaume Beaudoin-Bussières ◽  
...  

AbstractA novel severe acute respiratory (SARS)-like coronavirus (SARS-CoV-2) is responsible for the current global coronavirus disease 2019 (COVID-19) pandemic, infecting millions of people and causing hundreds of thousands of deaths. The viral entry of SARS-CoV-2 depends on an interaction between the receptor binding domain of its trimeric Spike glycoprotein and the human angiotensin converting enzyme 2 (ACE2) receptor. A better understanding of the Spike/ACE2 interaction is still required to design anti-SARS-CoV-2 therapeutics. Here, we investigated the degree of cooperativity of ACE2 within both the SARS-CoV-2 and the closely related SARS-CoV-1 membrane-bound S glycoproteins. We show that there exist differential inter-protomer conformational transitions between both Spike trimers. Interestingly, the SARS-CoV-2 spike exhibits a positive cooperativity for monomeric soluble ACE2 binding when compared to the SARS-CoV-1 spike, which might have more structural restrains. Our findings can be of importance in the development of therapeutics that block the Spike/ACE2 interaction.


2021 ◽  
Vol 27 ◽  
Author(s):  
Youness Kadil ◽  
Mohammed Mouhcine ◽  
Imane Rahmoune ◽  
Houda Filali

Introduction: Coronaviruses are an enveloped virus with a positive-sense single-stranded RNA genome. It has been shown that the viral spike S glycoprotein binds to the cell membrane protein angiotensin-converting enzyme 2 as an invasive process of the virus. The aim of this research is the application of a computational approach in the identification of the interaction residues ACE2 with severe acute respiratory syndrome Coronavirus 2. A methodological study to understand the interactions between SARS CoV2 and ACE2, which is essential for the development of a vaccine and an antiviral. Methods: The S protein is cleaved into two subunits, S1 and S2. S1 contains the receptor-binding domain (RBD) which allows the virus to bind directly to the peptidase domain of ACE2. Results: Our results present the overall differences in contact residues between the different chains, and an alignment between the two SARS Viruses, along with a presentation of similarity between them.Then S2 likely plays a role in membrane fusion. Conclusions : The synthesis of our results appears to provide potentially a rational set of objectives that can help in the development of a SARS-CoV-2 vaccine.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5906
Author(s):  
Sk. Sarif Hassan ◽  
Shinjini Ghosh ◽  
Diksha Attrish ◽  
Pabitra Pal Choudhury ◽  
Alaa A. A. Aljabali ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22–42, aa 79–84, and aa 330–393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2020 ◽  
Author(s):  
Sk. Sarif Hassan ◽  
Shinjini Ghosh ◽  
Diksha Attrish ◽  
Pabitra Pal Choudhury ◽  
Vladimir N. Uversky ◽  
...  

AbstractAngiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22-42, aa 79-84, and aa 330-393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species.


2020 ◽  
Author(s):  
Cecylia S. Lupala ◽  
Vikash Kumar ◽  
Xuanxuan Li ◽  
Xiao-dong Su ◽  
Haiguang Liu

ABSTRACTThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19, is spreading globally and has infected more than 3 million people. It has been discovered that SARS-CoV-2 initiates the entry into cells by binding to human angiotensin-converting enzyme 2 (hACE2) through the receptor binding domain (RBD) of its spike glycoprotein. Hence, drugs that can interfere the SARS-CoV-2-RBD binding to hACE2 potentially can inhibit SARS-CoV-2 from entering human cells. Here, based on the N-terminal helix α1 of human ACE2, we designed nine short peptides that have potential to inhibit SARS-CoV-2 binding. Molecular dynamics simulations of peptides in the their free and SARS-CoV-2 RBD-bound forms allow us to identify fragments that are stable in water and have strong binding affinity to the SARS-CoV-2 spike proteins. The important interactions between peptides and RBD are highlighted to provide guidance for the design of peptidomimetics against the SARS-CoV-2.


Author(s):  
Juan J de Pablo ◽  
Walter Alvarado ◽  
Fabian Bylehn ◽  
Cintia Menendez ◽  
Gustavo Perez

The interactions between the receptor binding domain (RBD) of SARS-CoV-2 and the angiotensin- converting enzyme 2 (ACE2) are crucial for viral entry and subsequent replication. Given the large and featureless...


2021 ◽  
Vol 223 (8) ◽  
pp. 1313-1321
Author(s):  
Linlin Bao ◽  
Zhiqi Song ◽  
Jing Xue ◽  
Hong Gao ◽  
Jiangning Liu ◽  
...  

Abstract Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and information for protecting the health of humans and cats.


Author(s):  
Hadas Cohen-Dvashi ◽  
Jonathan Weinstein ◽  
Michael Katz ◽  
Maayan Eilon ◽  
Yuval Mor ◽  
...  

AbstractAngiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computational analysis of mammalian ACE2 orthologues suggests various residues at the interface with the viral receptor binding domain that could facilitate tighter interaction compared to the human-ACE2. Introducing several mutations to the human-ACE2 resulted with significantly augmented affinity to the viral spike complex. This modified human-ACE2 fused to an Fc portion of an antibody makes a potent immunoadhesin that effectively targets SARS-CoV-2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanyun Du ◽  
Rui Shi ◽  
Ying Zhang ◽  
Xiaomin Duan ◽  
Li Li ◽  
...  

AbstractThe successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.


Sign in / Sign up

Export Citation Format

Share Document