scholarly journals Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 637
Author(s):  
Gregory C. Gray ◽  
Emily R. Robie ◽  
Caleb J. Studstill ◽  
Charles L. Nunn

Despite many recent efforts to predict and control emerging infectious disease threats to humans, we failed to anticipate the zoonotic viruses which led to pandemics in 2009 and 2020. The morbidity, mortality, and economic costs of these pandemics have been staggering. We desperately need a more targeted, cost-efficient, and sustainable strategy to detect and mitigate future zoonotic respiratory virus threats. Evidence suggests that the transition from an animal virus to a human pathogen is incremental and requires a considerable number of spillover events and considerable time before a pandemic variant emerges. This evolutionary view argues for the refocusing of public health resources on novel respiratory virus surveillance at human–animal interfaces in geographical hotspots for emerging infectious diseases. Where human–animal interface surveillance is not possible, a secondary high-yield, cost-efficient strategy is to conduct novel respiratory virus surveillance among pneumonia patients in these same hotspots. When novel pathogens are discovered, they must be quickly assessed for their human risk and, if indicated, mitigation strategies initiated. In this review, we discuss the most common respiratory virus threats, current efforts at early emerging pathogen detection, and propose and defend new molecular pathogen discovery strategies with the goal of preempting future pandemics.

Author(s):  
Sinha Pranay ◽  
Katherine Reifler ◽  
Michael Rossi ◽  
Manish Sagar

Abstract Detection of diverse respiratory viruses in Boston was around 80% lower after practices were instituted to limit COVID-19 spread compared to the same time period during the previous five years. Continuing the strategies that lower COVID-19 dissemination may be useful in decreasing the incidence of other viral respiratory infections.


Author(s):  
Zaid Haddadin ◽  
Danielle A. Rankin ◽  
Loren Lipworth ◽  
Mina Suh ◽  
Rendie McHenry ◽  
...  

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueqin Cheng ◽  
Zhiqian Dou ◽  
Jing Yang ◽  
Dexi Liu ◽  
Yulong Gu ◽  
...  

AbstractStreptococcus agalactiae (S. agalactiae) is an important pathogen that can lead to neonatus and mother infection. The current existing techniques for the identification of S. agalactiae are limited by accuracy, speed and high-cost. Therefore, a new multiple cross displacement amplification (MCDA) assay was developed for test of the target pathogen immediately from vaginal and rectal swabs. MCDA primers screening were conducted targeting S. agalactiae pcsB gene, and one set of MCDA primers with better rapidity and efficiency was selected for establishing the S. agalactiae-MCDA assay. As a result, the MCDA method could be completed at a constant temperature of 61 °C, without the requirement of special equipment. The detection limit is 250 fg (31.5 copies) per reaction, all S. agalactiae strains displayed positive results, but not for non-S. agalactiae strains. The visual MCDA assay detected 16 positive samples from 200 clinical specimen, which were also detected positive by enrichment/qPCR. While the CHROMagar culture detected 6 positive samples. Thus, the MCDA assay is prefer to enrichment/qPCR and culture for detecting S. agalactiae from clinical specimen. Particularly, the whole test of MCDA takes about 63.1 min, including sample collection (3 min), DNA preparation (15 min), MCDA reaction (45 min) and result reporting (6 s). In addition, the cost was very economic, with only US$ 4.9. These results indicated that our S. agalaciae-MCDA assay is a rapid, sensitive and cost-efficient technique for target pathogen detection, and is more suitable than conventional assays for an urgent detection, especially for 'on-site' laboratories and resource-constrained settings.


Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3251-3258
Author(s):  
Sheng-Ren Sun ◽  
Jun-Lü Chen ◽  
Yao-Yao Duan ◽  
Na Chu ◽  
Mei-Ting Huang ◽  
...  

Ratoon stunting disease (RSD), one of the most important diseases of sugarcane, is caused by the bacterium Leifsonia xyli subsp. xyli (Lxx). Lxx infects sugarcane worldwide and RSD results in high yield losses and varietal degeneration. It is highly challenging to diagnose RSD based on visual symptomatology because this disease does not exhibit distinct external and internal symptoms. In this study, a novel Lxx-specific primer pair Lxx-F1/Lxx-R1 was designed to detect this pathogen using a conventional PCR assay. These primers were then compared with four published Lxx-specific primers and one universal Leifsonia generic primer pair LayF/LayR. Sugarcane leaf samples were collected from Saccharum spp. hybrids in commercial fields (315 samples) and from germplasm clones of five Saccharum species and Erianthus arundinaceus (216 samples). These samples were used for comparative field diagnosis with six conventional PCR assays. Sensitivity tests suggested that the PCR assay with primers Lxx-F1/Lxx-R1 had the same detection limit (1 pg of Lxx genomic DNA) as the primer pairs Cxx1/Cxx2 and CxxITSf#5/CxxITSr#5 and had 10-fold higher sensitivity than the primer pairs Pat1-F2/Pat1-R2, LayF/LayR, and C2F/C2R. Comparison of PCR assays revealed that natural Lxx-infection incidence (6.1%) in field sample evaluation identified by Lxx-F1/Lxx-R1 primers was higher than incidences (0.7 to 3.0%) determined by other primer pairs. Moreover, no nonspecific DNA amplification occurred within these field samples with Lxx-F1/Lxx-R1 primers, unlike with the primer pairs Cxx1/Cxx2 and LayF/LayR. Diverse Leifsonia strains were identified by PCR detection with LayF/LayR primers in the field samples, whereas whether these Leifsonia strains were pathogenic to sugarcane requires further research. Our investigations revealed that the PCR assay with the newly designed primers Lxx-F1/Lxx-R1 could be widely used for RSD diagnosis and Lxx-pathogen detection with satisfactory sensitivity and specificity.


Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 148
Author(s):  
Tiago Miguel Ferreira ◽  
Nuno Mendes ◽  
Rui Silva

Devastating seismic events occurring all over the world keep raising the awareness of the scientific, technical and political communities to the need of identifying assets at risk and developing more effective and cost-efficient seismic risk mitigation strategies [...]


2012 ◽  
Vol 16 ◽  
pp. e147
Author(s):  
P. Turner ◽  
V. Carrara ◽  
C. Turner ◽  
N. Cicelia ◽  
W. Watthanaworawit ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253451
Author(s):  
Kyu Young Park ◽  
Sumin Seo ◽  
Junhee Han ◽  
Ji Young Park

Background Various public health measures have been implemented globally to counter the coronavirus disease 2019 (COVID-19) pandemic. The purpose of this study was to evaluate respiratory virus surveillance data to determine the effectiveness of such interventions in reducing transmission of seasonal respiratory viruses. Method We retrospectively analysed data from the Respiratory Virus Detection Surveillance System in Canada, before and during the COVID-19 pandemic, by interrupted time series regression. Results The national level of infection with seasonal respiratory viruses, which generally does not necessitate quarantine or contact screening, was greatly reduced after Canada imposed physical distancing and other quarantine measures. The 2019–2020 influenza season ended earlier than it did in the previous year. The influenza virus was replaced by rhinovirus/enterovirus or parainfluenza virus in the previous year, with the overall test positivity remaining at approximately 35%. However, during the 2019–2020 post-influenza period, the overall test positivity of respiratory viruses during the COVID-19 was still low (7.2%). Moreover, the 2020–2021 influenza season had not occurred by the end of February 2021. Conclusion Respiratory virus surveillance data may provide real-world evidence of the effectiveness of implemented public health interventions during the current and future pandemics.


2011 ◽  
Author(s):  
Catherine Uyehara ◽  
Scott Stewart

Sign in / Sign up

Export Citation Format

Share Document