scholarly journals Expression of an Antiviral Gene GmRUN1 from Soybean Is Regulated via Intron-Mediated Enhancement (IME)

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2032
Author(s):  
Pengfei Diao ◽  
Hongyu Sun ◽  
Zhuo Bao ◽  
Wenxia Li ◽  
Niu Niu ◽  
...  

Most of R (resistance) genes encode the protein containing NBS-LRR (nucleotide binding site and leucine-rich repeat) domains. Here, N. benthamiana plants were used for transient expression assays at 3–4 weeks of age. We identified a TNL (TIR-NBS-LRR) encoding gene GmRUN1 that was resistant to both soybean mosaic virus (SMV) and tobacco mosaic virus (TMV). Truncation analysis indicated the importance of all three canonical domains for GmRUN1-mediated antiviral activity. Promoter-GUS analysis showed that GmRUN1 expression is inducible by both salicylic acid (SA) and a transcription factor GmDREB3 via the cis-elements as-1 and ERE (ethylene response element), which are present in its promoter region. Interestingly, GmRUN1 gDNA (genomic DNA) shows higher viral resistance than its cDNA (complementary DNA), indicating the existence of intron-mediated enhancement (IME) for GmRUN1 regulation. We provided evidence that intron2 of GmRUN1 increased the mRNA level of native gene GmRUN1, a soybean antiviral gene SRC7 and also a reporter gene Luciferase, indicating the general transcriptional enhancement of intron2 in different genes. In summary, we identified an antiviral TNL type soybean gene GmRUN1, expression of which was regulated at different layers. The investigation of GmRUN1 gene regulatory network would help to explore the mechanism underlying soybean-SMV interactions.

PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231658
Author(s):  
Lindsay C. DeMers ◽  
Neelam R. Redekar ◽  
Aardra Kachroo ◽  
Sue A. Tolin ◽  
Song Li ◽  
...  

2013 ◽  
Vol 26 (2) ◽  
pp. 203-215 ◽  
Author(s):  
R.-H. Wen ◽  
B. Khatabi ◽  
T. Ashfield ◽  
M. A. Saghai Maroof ◽  
M. R. Hajimorad

The complex Rsv1 locus in soybean plant introduction (PI) ‘PI96983’ confers extreme resistance (ER) against Soybean mosaic virus (SMV) strain N but not SMV-G7 and SMV-G7d. Both the SMV helper-component proteinase (HC-Pro) and P3 cistrons can serve as avirulence factors recognized by Rsv1. To understand the genetics underlying recognition of the two cistrons, we have utilized two soybean lines (L800 and L943) derived from crosses between PI96983 (Rsv1) and Lee68 (rsv1) with distinct recombination events within the Rsv1 locus. L800 contains a single PI96983-derived member (3gG2) of an Rsv1-associated subfamily of nucleotide-binding leucine-rich repeat (NB-LRR) genes. In contrast, although L943 lacks 3gG2, it contains a suite of five other NB-LRR genes belonging to the same family. L800 confers ER against SMV-N whereas L943 allows limited replication at the inoculation site. SMV-N-derived chimeras containing HC-Pro from SMV-G7 or SMV-G7d gained virulence on L943 but not on L800 whereas those with P3 replacement gained virulence on L800 but not on L943. In reciprocal experiments, SMV-G7- and SMV-G7d-derived chimeras with HC-Pro replacement from SMV-N lost virulence on L943 but retained virulence on L800 whereas those with P3 replacement lost virulence on L800 while remaining virulent on L943. These data demonstrate that distinct resistance genes at the Rsv1 locus, likely belonging to the NB-LRR class, mediate recognition of HC-Pro and P3.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


Sign in / Sign up

Export Citation Format

Share Document