scholarly journals Numerical Study of the Influence of Tidal Current on Submarine Pipeline Based on the SIFOM–FVCOM Coupling Model

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1814 ◽  
Author(s):  
Enjin Zhao ◽  
Lin Mu ◽  
Bing Shi

The interaction between coastal ocean flows and the submarine pipeline involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales has always been an important research subject. In this article, the hydrodynamic forces on the submarine pipeline and the characteristics of tidal flows around the pipeline are studied depending on a high-fidelity multi-physics modeling system (SIFOM–FVCOM), which is an integration of the Solver for Incompressible Flow on the Overset Meshes (SIFOM) and the Finite Volume Coastal Ocean Model (FVCOM). The interactions between coastal ocean flows and the submarine pipeline are numerically simulated in a channel flume, the results of which show that the hydrodynamic forces on the pipeline increase with the increase of tidal amplitude and the decrease of water depth. Additionally, when scour happens under the pipeline, the numerical simulation of the suspended pipeline is also carried out, showing that the maximum horizontal hydrodynamic forces on the pipeline reduce and the vertical hydrodynamic forces grow with the increase of the scour depth. According to the results of the simulations in this study, an empirical formula for estimating the hydrodynamic forces on the submarine pipeline caused by coastal ocean flows is given, which might be useful in engineering problems. The results of the study also reveal the basic features of flow structures around the submarine pipeline and its hydrodynamic forces caused by tidal flows, which contributes to the design of submarine pipelines.

2021 ◽  
Vol 9 (3) ◽  
pp. 317
Author(s):  
Wanli Hou ◽  
Menglin Ba ◽  
Jie Bai ◽  
Jianghua Yu

In view of the expansion and directional change mechanisms of Yangtze River water diluted with sea water in the shelf region (also known as Changjiang diluted water [CDW]) during summer and autumn, a three-dimensional hydrodynamic model of the Yangtze River Estuary (YRE) and its adjacent waters was established based on the Finite Volume Community Ocean Model (FVCOM). Compared with the measured data, the model accurately simulates the hydrodynamic characteristics of the YRE. On that basis, the influence of the expansion patterns of the CDW in both summer and autumn was studied. It was found that, in 2019, the CDW expanded to the northeast in the summer and to the southeast in the autumn, and that the route of the CDW is mainly controlled by the wind, not the runoff. Current seasonal winds also change the transportation route of the CDW by affecting its hydrodynamic field. Typhoons are frequent in both summer and autumn, causing abnormalities in both the transportation route and expansion of the CDW. During a typhoon, a large amount of the CDW is transported in a continuous and abnormal manner, accelerating the path turning of the CDW. This paper enhances the existing theoretical research of the CDW and provides a reference with respect to the expansion of diluted water all over the world.


2017 ◽  
Vol 29 (4) ◽  
pp. 679-690 ◽  
Author(s):  
Xu-dong Zhao ◽  
Shu-xiu Liang ◽  
Zhao-chen Sun ◽  
Xi-zeng Zhao ◽  
Jia-wen Sun ◽  
...  

Oceanography ◽  
2006 ◽  
Vol 19 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Changsheng Chen ◽  
Roberet Beardsley ◽  
Geoffrey Cowles

MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 657-668
Author(s):  
XIAOMING LIU ◽  
JOHN M. MORRISON ◽  
LIAN XIE

Two sets of atmospheric forcing from NCEP/NCAR 40-year reanalysis project, one based on monthly averaged climatological data and the other on 1982-83 monthly averaged data, are used to derive the global Miami Isopycnic Coordinate Ocean Model (MICOM). These two runs are referred to as the climatological experiments and 1982-83 El Nino experiments. Sensitivity tests of tropical Pacific SST to different bulk parameterizations of air-sea heat and momentum fluxes are carried out in the two experiments. Primary results show that constant transfer coefficients                          (1.2 × 10-3) for heat flux greatly overestimate the tropical Pacific SST, whereas the Liu-Katsaros-Businger (Liu et al. 1979) method can significantly improve the SST simulation especially under very low-wind speed conditions. On the other hand, Large and Pond (1982) formulation of the drag coefficient made little difference on the tropical Pacific SST simulation although it might modify the surface ocean circulation. The SST seasonal cycle and interannual variability of tropical Pacific SST are also examined in this study. Since SST is the most important oceanic parameter that provides the link between the atmosphere and the ocean, this evaluation of different parameterization schemes may facilitate future studies on coupling ocean-atmospheric numeric models.    


Sign in / Sign up

Export Citation Format

Share Document