scholarly journals Natural Attenuation of Mn(II) in Metal Refinery Wastewater: Microbial Community Structure Analysis and Isolation of a New Mn(II)-Oxidizing Bacterium Pseudomonas sp. SK3

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 507 ◽  
Author(s):  
Santisak Kitjanukit ◽  
Kyohei Takamatsu ◽  
Naoko Okibe

Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.

2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Kärt Kanger ◽  
Nigel G H Guilford ◽  
HyunWoo Lee ◽  
Camilla L Nesbø ◽  
Jaak Truu ◽  
...  

ABSTRACT Solid organic waste is a significant source of antibiotic resistance genes (ARGs) and effective treatment strategies are urgently required to limit the spread of antimicrobial resistance. Here, we studied ARG diversity and abundance as well as the relationship between antibiotic resistome and microbial community structure within a lab-scale solid-state anaerobic digester treating a mixture of food waste, paper and cardboard. A total of 10 samples from digester feed and digestion products were collected for microbial community analysis including small subunit rRNA gene sequencing, total community metagenome sequencing and high-throughput quantitative PCR. We observed a significant shift in microbial community composition and a reduction in ARG diversity and abundance after 6 weeks of digestion. ARGs were identified in all samples with multidrug resistance being the most abundant ARG type. Thirty-two per cent of ARGs detected in digester feed were located on plasmids indicating potential for horizontal gene transfer. Using metagenomic assembly and binning, we detected potential bacterial hosts of ARGs in digester feed, which included Erwinia, Bifidobacteriaceae, Lactococcus lactis and Lactobacillus. Our results indicate that the process of sequential solid-state anaerobic digestion of food waste, paper and cardboard tested herein provides a significant reduction in the relative abundance of ARGs per 16S rRNA gene.


2020 ◽  
Author(s):  
Bernard N. Kanoi ◽  
Maribet Gamboa ◽  
Doris Ngonzi ◽  
Thomas G. Egwang

AbstractMicrobial community structure changes are key in detecting and characterizing the impacts of anthropogenic activities on aquatic ecosystems. Here, we evaluated the effect of river pollution of industrial and urban sites on the microbial community composition and distribution in the Nakivubo wetland and its catchment areas in Lake Victoria basin, Uganda. Samples were collected from two industrial and one urban polluted sites and the microbial diversity was analyzed based on a 16S rRNA gene clone library. Differences in microbial diversity and community structure were observed at different sampling points. Bacteria associated with bioremediation were found in sites receiving industrial waste, while a low proportion of important human-pathogenic bacteria were seen in urban polluted sites. While Escherichia spp. was the most dominant genus of bacteria for all sites, three unique bacteria, Bacillus sp., Pseudomonas sp., Thermomonas sp., which have been reported to transform contaminants such as heavy metals and hydrocarbons (such as oils) by their metabolic pathways were also identified. Our results may serve as a basis for further studies assessing microbial community structure changes among polluted sites at Nakivubo Water Channel for management and monitoring. The diversity of natural microbial consortia could also be a rich bioprospecting resource for novel industrial enzymes, medicinal and bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document