scholarly journals Assessment of the Effect of Mulch Film on Crops in the Arid Agricultural Region of China under Future Climate Scenarios

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1819
Author(s):  
Lu Deng ◽  
Xianyong Meng ◽  
Ruide Yu ◽  
Qian Wang

Plastic mulch film is widely used in agricultural production. However, there are very few studies on degradable mulch film. In order to investigate the effects of using degradable mulch film in arid regions on crop yield and water use efficiency, we used fully biodegradable mulch films on both maize and bare land cultivation experimental areas. The DeNitrification-DeComposition (DNDC) model was used to analyze changes in maize biomass in the future under different climate scenario models. We found that using fully biodegradable mulch film in an arid region had a positive effect on biomass yields. In 2015–2017, the annual maize biomass yield increased by 24.5%, 28.9%, and 32.9%, respectively. Hence, this method has expansion and promotion value. A comparison of the DNDC model simulated biomass yields and actual measured values found that the ranges of R2, root mean square error (RMSE), and model efficiency (ME) were 0.98–0.99, 0.38–0.86 mg C ha−1, and 0.80–0.98. This result shows that the DNDC model can accurately simulate changes in maize biomass in this region. Under the premise of a good model fit, future climate scenario model data were used to drive the DNDC model. The results showed that the possible range of maize biomass yields in the future is −6.5% to 10.3%, with the most probable range being 0.2–1.5%. Using future climatic conditions, our work suggests that degradable mulch films can increase water use efficiency by an average of 9.5%. The results of this study can be used to promote the use of degradable mulch films in arid regions, significantly improving sustainable agricultural development.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Weinan Lu ◽  
Wenxin Liu ◽  
Mengyang Hou ◽  
Yuanjie Deng ◽  
Yue Deng ◽  
...  

Improving agricultural water use efficiency (AWUE) is an important way to solve the shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018. Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA) to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model was then used to analyze the main factors that influence the AWUE in Northwest China. The results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a steady upward trend. However, only a few cities achieved effective agricultural water usage by 2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial autocorrelation in Northwest China and showed significant high–high and low–low agglomeration characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have significant, positive effects on AWUE, while per capita water resource has a significant, negative influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be formulated according to local conditions. The results of this study can provide new ideas on the study of AWUE in arid and semi-arid regions and provide references for the formulation of regional agricultural water resource utilization policies as well.


2021 ◽  
Vol 39 (3) ◽  
pp. 330-334
Author(s):  
Agnaldo Roberto de J Freitas ◽  
Francisco Claudio L de Freitas ◽  
Caetano Marciano de Souza ◽  
Fabio T Delazari ◽  
Paulo Geraldo Berger ◽  
...  

ABSTRACT Vegetable cultivation requires high water use and weed control. Soil cover using recycled paper, can be an alternative to polyethylene film to reduce weed incidence, soil temperature and increase water use efficiency beyond reduces costs and environmental pollutions. The objective of this study was to evaluate the use of biodegradable mulch in weed management and water use efficiency (WUE) in lettuce crop. The treatments were composed of brown recycled paper (RP), black polyethylene film (PF) and soil without cover with weed removal (WR) and without weed removal (WW). RP and PF were efficient to control weeds. The soil temperature with RP was 8.2 and 2.1ºC lower than with PF and WR, respectively. The lettuce yield with RP was 14.5 and 28.3% higher than WR, and with PF, respectively. The water volume applied with RP was 26.5% lower, and WUE was 55.6% higher compared to WR. Soil cover with recycled paper controlled weeds, reduced soil temperature and water consumption and increased yield and water use efficiency in lettuce crop.


2020 ◽  
Vol 112 (1) ◽  
pp. 578-591 ◽  
Author(s):  
Yao Guo ◽  
Wen Yin ◽  
Zhilong Fan ◽  
Falong Hu ◽  
Hong Fan ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 706
Author(s):  
Abdulhalim H. Farah ◽  
Hussein M. Al-Ghobari ◽  
Tarek K. Zin El-Abedin ◽  
Mohammed S. Alrasasimah ◽  
Ahmed A. El-Shafei

Practical and sustainable water management systems are needed in arid regions due to water shortages and climate change. Therefore, an experiment was initiated in winter (WS) and spring (SS), to investigate integrating deficit irrigation, associated with partial root drying (PRD) and soil mulching, under subsurface drip irrigation on squash yield, fruit quality, and irrigation water use efficiency (IWUE). Two mulching treatments, transparent plastic mulch (WM) and black plastic mulch (BM), were tested, and a treatment without mulch (NM) was used as a control. Three levels of irrigation were examined in a split-plot design with three replications: 100% of crop evapotranspiration (ETc), representing full irrigation (FI), 70% of ETc (PRD70), and 50% of ETc (PRD50). There was a higher squash yield and lower IWUE in SS than WS. The highest squash yields were recorded for PDR70 (82.53 Mg ha−1) and FI (80.62 Mg ha−1). The highest IWUE was obtained under PRD50. Plastic mulch significantly increased the squash yield (34%) and IWUE (46%) and enhanced stomatal conductance, photosynthesis, transpiration, leaf chlorophyll fluorescence, and leaf chlorophyll contents under PRD plants. These results indicate that in arid and semi-arid regions, soil mulch with deficit PRD could be used as a water-saving strategy without reducing yields.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8738 ◽  
Author(s):  
Jiao Ning ◽  
Xiong Z. He ◽  
Fujiang Hou ◽  
Shanning Lou ◽  
Xianjiang Chen ◽  
...  

Alfalfa in China is mostly planted in the semi-arid or arid Northwest inland regions due to its ability to take up water from deep in the soil and to fix atmospheric N2 which reduces N fertilizer application. However, perennial alfalfa may deplete soil water due to uptake and thus aggravate soil desiccation. The objectives of this study were (1) to determine the alfalfa forage yield, soil property (soil temperature (ST), soil water content (SWC), soil organic carbon (SOC) and soil total nitrogen (STN)) and greenhouse gas (GHG: methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)) emissions affected by alfalfa stand age and growing season, (2) to investigate the effects of soil property on GHG emissions, and (3) to optimize the alfalfa stand age by integrating the two standard criteria, the forage yield and water use efficiency, and the total GHG efflux (CO2-eq). This study was performed in alfalfa fields of different ages (2, 3, 5 and 7 year old) during the growing season (from April to October) in a typical salinized meadow with temperate continental arid climate in the Northwest inland regions, China. Despite its higher total GHG efflux (CO2-eq), the greater forage yield and water use efficiency with lower GEIhay and high CH4 uptake in the 5-year alfalfa stand suggested an optimal alfalfa stand age of 5 years. Results show that ST, SOC and RBM alone had positive effects (except RBM had no significant effect on CH4 effluxes), but SWC and STN alone had negative effects on GHG fluxes. Furthermore, results demonstrate that in arid regions SWC superseded ST, SOC, STN and RBM as a key factor regulating GHG fluxes, and soil water stress may have led to a net uptake of CH4 by soils and a reduction of N2O and CO2 effluxes from alfalfa fields. Our study has provided insights into the determination of alfalfa stand age and the understanding of mechanisms regulating GHG fluxes in alfalfa fields in the continental arid regions. This knowledge is essential to decide the alfalfa retention time by considering the hay yield, water use efficiency as well as GHG emission.


Sign in / Sign up

Export Citation Format

Share Document