scholarly journals In Situ Formation of Ionic Liquid by Metathesis Reaction for the Rapid Removal of Bisphenol A from Aqueous Solutions

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2087 ◽  
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Óscar De Francisco-Ortíz ◽  
Carmen Fernández-López

In this work we present a rapid and easy method to remove the totality of bisphenol A from aqueous solutions using ionic liquid (IL). Dispersive liquid–liquid microextraction is employed. The IL 1-octyl-3-methylimidazolium bis((trifluoromethane)sulfonyl)imide ([C8C1im] [NTf2]) is formed in situ because of the mixture of 1-octyl-3-methylimidazolium chloride ([C8C1im]Cl) and lithium bis(trifluoromethanesulfonyl)imide (Li[NTf2]) aqueous solutions. A cloud of microdroplets of IL formed by the dispersion generated through the precursors metathesis reaction allows the rapid and total extraction of bisphenol A (BPA). After centrifugation, the formed IL phase is deposited at the bottom of the flask and the total amount of BPA is extracted in the sedimented phase. The volume of IL is very low, in the order of microliters, which enables us to remove all the BPA from the solution. The technique studied is highly efficient, cost-effective, and presents less environmental impact than other extraction techniques, thus becoming an outstanding alternative to the most commonly used methods. BPA concentration is determined by high performance liquid chromatography by injecting the IL phase directly. An extraction kinetic model for the kinetic profile has been tested for this method, which allows to infer the ideal experimental conditions to execute the extraction method.

2020 ◽  
Vol 13 (10) ◽  
pp. 301
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca

Bisphenol A (BPA) is a chemical compound used in the manufacturing of plastics and resins whose presence in the body in low concentrations can cause serious health problems. Due to this, there is a growing interest in the scientific community to develop analytical methods that allow quantifying trace concentrations of BPA in different types of samples. The determination of this compound in toys made of plastics that can be manipulated by children leads to an extra concern, because it is possible for BPA to enter the body by introducing these toys into the mouth. This work presents a novel procedure to the quickly and easily quantification of trace levels of BPA in samples of toys and pacifiers according to the current demanding regulations. The determination of very low levels of BPA was carried out by ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) followed by high-performance liquid chromatography (HPLC). The formation in situ of the ionic liquid (IL) 1-octyl-3-methylimidazolium bis((trifluoromethane)sulfonyl)imide ([C8MIm] [NTf2]), was achieved by mixing 1-octyl-3-methylimidazolium chloride ([C8MIm]Cl) and lithium bis(trifluoromethanesulfonyl)imide ([NTf2]Li) aqueous solutions, reaching an instant dispersion whose cloud of microdrops allows the total extraction of BPA in the IL from aqueous solutions. After centrifugation, BPA concentration in the sedimented phase was determined by HPLC. The optimal experimental conditions for the microextraction and determination of BPA in the IL were studied. The total extraction was achieved at pH 4, heating the sample at 30 °C for 5 min, using 100 µL of IL precursor volume, and spinning after the formation of dispersion at 3000 rpm for 10 min. The enrichment factor (EF) and detection limit (LOD) reached with the procedure were 299 and 0.19 µg L−1, respectively. The relative standard deviation for ten replications at the 0.5 µg L−1 level was 5.2%. Recovery studies showed a mean value for BPA recovery percentage in the samples of 99%. Additionally, a hybrid model was applied to characterize the extraction kinetics. This simple, low cost and fast method simplifies traditional microextraction techniques, representing an outstanding alternative.


2011 ◽  
Vol 295-297 ◽  
pp. 21-25
Author(s):  
Hong Kai Zhao ◽  
Li Guang Xiao ◽  
Hong Jie Wang

High performance trend of plastics has become a hot spot of current research. Select bisphenol A dianhydride and bisphenol A diamine with excellent water resistance as the reactant monomers to obtain anhydride-terminated polyimide with very high molecular weight by two-step polymerization, graft the active radicals of acyl caprolactam using the activity of anhydride and obtain PI modified nylon resin by polymerization.When the system temperature is above 160 °C and the added modifiers are greater than 10%, the system viscosity increases very fast; when the system temperature reaches 140 °C and the added modifiers are at 5%, the system viscosity increases very slowly. It is proved that the reaction in each above step is successful through infrared analysis. The mechanical properties of modified PI nylon increases with the increase of consumption and molecular weight of polyimide, when the molecular weight is selected to be about 8000~10000 and the adding amount is 10wt%~15 wt%, the tensile strength reaches over 85MPa, the notch impact strength is increased to 19.6kJ.m-2 and the elongation at break reaches 18%, which are remarkably better than general engineering plastics.Through microscopic analysis, the molecules of polyimide does not enter crystallization phase of nylon resin, but forms compact lamellar crystals existing in nylon matrix.


Sign in / Sign up

Export Citation Format

Share Document