scholarly journals Characteristics of Water Isotopes and Water Source Identification During the Wet Season in Naqu River Basin, Qinghai-Tibet Plateau

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2418 ◽  
Author(s):  
Xi Chen ◽  
Guoli Wang ◽  
Fuqiang Wang ◽  
Denghua Yan ◽  
Heng Zhao

Climate change is affecting the discharge of headstreams from mountainous areas on the Qinghai–Tibet Plateau. To constrain future changes in discharge, it is important to understand the present-day formation mechanism and components of runoff in the basin. Here we explore the sources of runoff and spatial variations in discharge through measurements of δ2H and δ18O in the Naqu River, at the source of the Nu River, on the Qinghai–Tibet plateau, during the month of August from 2016 to 2018. We established thirteen sampling sites on the main stream and tributaries, and collected 39 samples from the river. We examined all the water samples and analyzed them for isotopes. We find a significant spatial variation trend based on one-way analysis of variance (ANOVA) (p < 0.05) between Main stream-2 and tributaries. The local meteoric water-line (LMWL) can be described as: δ2H = 7.9δ18O + 6.29. Isotopic evaporative fractionation in water and mixing of different water sources are responsible for the spatial difference in isotopic values between Main stream-2 and tributaries. Based on isotopic hydrograph separation, the proportion of snowmelt in runoff components ranges from 15% to 47%, and the proportion of rainwater ranges from 3% to 35%. Thus, the main components of runoff in the Naqu River are snowmelt and groundwater.

ZooKeys ◽  
2021 ◽  
Vol 1059 ◽  
pp. 157-171
Author(s):  
Jun Qiu ◽  
Cang Ma ◽  
Ying-Hui Jia ◽  
Jin-Zhao Wang ◽  
Shou-Kai Cao ◽  
...  

Plateau pikas (Ochotona curzoniae) are regarded as one of the main causes of the degradation of alpine meadows in the Qinghai-Tibet Plateau (QTP). The population density of plateau pikas is directly related to the degree of grassland damage. In this study, field observation was conducted for one week in the southeastern QTP in August 2019. A random encounter model (REM) was used to estimate the population density of plateau pikas from photographs and videos, and the frequencies of different behaviors were calculated. In addition, the effects of water-source distance and terrain on the distribution of plateau pikas and the frequencies of different pika behaviors under different population densities were explored. The observations and knowledge derived from this study provide a reference for the population control of plateau pikas.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2578
Author(s):  
Mingxia Du ◽  
Mingjun Zhang ◽  
Shengjie Wang ◽  
Hongfei Meng ◽  
Cunwei Che ◽  
...  

Based on 1260 tap water samples gathered monthly and 136 surface water samples collected seasonally in the eastern margin of the Qinghai–Tibet Plateau, the local tap water line, the basic spatiotemporal characteristics of tap water isotopes, and their indication for water source under different water supply modes were discussed, linking the local tap water supply and water source information. A new tap water isotopes data set based on dense sampling sites was established, which was reliable for the analysis of tap water isotope features, tap water supply management, and tap water sources. The main conclusions are: (1) The local tap water lines in Gannan and Longnan are δ2H = (7.06 ± 0.17) δ18O + (3.24 ± 1.75) (r2 = 0.81, p < 0.01) and δ2H = (5.66 ± 0.09) δ18O + (−8.12 ± 0.82) (r2 = 0.82, p < 0.01), respectively. (2) The annual mean δ2H and δ18O in tap water show an increasing trend from southwest to northeast. The seasonal differences of δ2H and δ18O in tap water in Gannan and Longnan are small. (3) The correlation of tap water isotopes with those in main source water is high, while that of isotopes in tap water with those in non-water source is low. Under the central water supply mode by local tap water company, tap water isotopes in Gannan where groundwater is the direct water source show weak connection with those in surface water and precipitation, and those in tap water in Longnan with surface water as main source water reveal good connection with isotopes in surface water. Under mixed water supply modes, tap water isotopes indicate that surface water is the main tap water source in Gannan and Longnan with multiple water sources.


2021 ◽  
Author(s):  
Jun Qiu ◽  
Cang Ma ◽  
Fang-Fang Li

Plateau pikas (Ochotona curzoniae) are regarded as one of the main reasons for the degradation of alpine meadows in the Qinghai-Tibet Plateau (QTP). The population density of plateau pikas is directly related to the degree of grassland damage. In this study, a one-week field observation was conducted in the southeastern QTP in August 2019. Based on the photos and videos, the random encounter model (REM) was used to estimate the population density of plateau pikas, and the frequency of different behaviors was counted. The effects of water source distance and terrain on the distribution of plateau pikas were also investigated. In addition, the frequency of different behaviors of plateau pikas under different population densities was also explored. The observations and knowledge derived from this study provide a reference for the population control of plateau pikas.


Author(s):  
Jing Zhou ◽  
Guodong Liu ◽  
Yuchuan Meng ◽  
Cheng Cheng Xia ◽  
Ke Chen

Abstract The Tuojiang River has multiple water sources and serious pollution problems, but its hydrological mechanism in the upper reaches is still unclear. To better understand the hydrological characteristics of the Tuojiang River, the isotopic compositions of its precipitation, river water and groundwater in the upper reaches have been investigated from May 2018 to April 2019. The results indicated that the isotope values of precipitation, river water and groundwater fluctuate significantly throughout the year with depleted value in the wet season and enriched value in the dry season. Spatially, the isotope values of river water increase gradually from upstream to downstream. River water is the main source of recharge to groundwater and precipitation is the minor one. The isotope-based hydrograph separation shows that the Mianyuan River and Pihe River contribute more greatly to Tuojiang River than the Shiting River and Yazi River. The mean residence time of river water from the Tuojiang River varies from 0.95 to 1.49 years, which indicates that rivers in the upper reaches of the Tuojiang River respond to precipitation quickly. This study proved the usefulness of stable isotopes to identify the different water cycle components and reflect the pollution problem in multiple water source confluence areas. HIGHLIGHT Analysis of the spatio-temporal characteristics of isotope values in the Tuojiang river basin. Exploration of the seasonal variation of recharge source to groundwater in the Tuojiang River. Analysis of the temporal variation in the relative contribution of tributaries over total river flow. Estimation of the mean residence time of the Tuojiang River and its tributaries.


2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  

Author(s):  
Deyan Ge ◽  
Anderson Feijó ◽  
Zhixin Wen ◽  
Alexei V Abramov ◽  
Liang Lu ◽  
...  

Abstract For organisms to survive and prosper in a harsh environment, particularly under rapid climate change, poses tremendous challenges. Recent studies have highlighted the continued loss of megafauna in terrestrial ecosystems and the subsequent surge of small mammals, such as rodents, bats, lagomorphs, and insectivores. However, the ecological partitioning of these animals will likely lead to large variation in their responses to environmental change. In the present study, we investigated the evolutionary history and genetic adaptations of white-bellied rats (Niviventer Marshall, 1976), which are widespread in the natural terrestrial ecosystems in Asia but also known as important zoonotic pathogen vectors and transmitters. The southeastern Qinghai-Tibet Plateau (QHTP) was inferred as the origin center of this genus, with parallel diversification in temperate and tropical niches. Demographic history analyses from mitochondrial and nuclear sequences of Niviventer demonstrated population size increases and range expansion for species in Southeast Asia, and habitat generalists elsewhere. Unexpectedly, population increases were seen in N. eha, which inhabits the highest elevation among Niviventer species. Genome scans of nuclear exons revealed that among the congeneric species, N. eha has the largest number of positively selected genes. Protein functions of these genes are mainly related to olfaction, taste and tumor suppression. Extensive genetic modification presents a major strategy in response to global changes in these alpine species.


Sign in / Sign up

Export Citation Format

Share Document