scholarly journals Transmissibility Upscaling on Unstructured Grids for Highly Heterogeneous Reservoirs

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2647 ◽  
Author(s):  
Dominique Guérillot ◽  
Jérémie Bruyelle

One critical point of modeling of flow in porous media is the capacity to consider parameters that are highly variable in space. It is then very challenging to simulate numerically fluid flow on such heterogeneous porous media. The continuous increase in computing power makes it possible to integrate smaller and smaller heterogeneities into geological models of up to tens of millions of cells. On such meshes, despite computer performance, multi-phase flow equations cannot be solved in an acceptable time for hydrogeologists and reservoir engineers, especially when the modeling considers several components in each fluid and when taking into account rock-fluid interactions. Taking average reservoir properties is a common approach to reducing mesh size. During the last decades, many authors studied the upscaling topic. Two different ways have been investigated to upscale the absolute permeability: (1) an average of the permeability for each cell, which is then used for standard transmissibility calculation, or (2) computing directly the upscaled transmissibility values using the high-resolution permeability values. This paper is related to the second approach. The proposed method uses the half-block approach and combines the finite volume principles with algebraic methods to provide an upper and a lower bound of the upscaled transmissibility values. An application on an extracted map of the SPE10 model shows that this approach is more accurate and faster than the classical transmissibility upscaling method based on flow simulation. This approach keeps the contrast of transmissibility values observed at the high-resolution geological scale and improves the accuracy of field-scale flow simulation for highly heterogeneous reservoirs. Moreover, the upper and lower bounds delivered by the algebraic method allow checking the quality of the upscaling and the gridding.

2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Hamed Movahedi ◽  
Mehrdad Vasheghani Farahani ◽  
Mohsen Masihi

Abstract In this paper, we present a computational fluid dynamics (CFD) model to perform single- and two-phase fluid flow simulation on two- and three-dimensional perforated porous media with different perforation geometries. The finite volume method (FVM) has been employed to solve the equations governing the fluid flow through the porous media and obtain the pressure and velocity profiles. The volume of fluid (VOF) method has also been utilized for accurate determination of the volume occupied by each phase. The validity of the model has been achieved via comparing the simulation results with the available experimental data in the literature. The model was used to analyze the effect of perforation geometrical parameters (length and diameter), degree of heterogeneity, and also crushed zone properties (permeability and thickness) on the pressure and velocity profiles. The two-phase fluid flow around the perforation tunnel under the transient flow regime was also investigated by considering a constant mass flow boundary condition at the inlet. The developed model successfully predicted the pressure drop and resultant temperature changes for the system of air–water along clean and gravel-filled perforations under the steady-state conditions. The presented model in this study can be used as an efficient tool to design the most appropriate perforation strategy with respect to the well characteristics and reservoir properties.


2010 ◽  
Vol 113-116 ◽  
pp. 126-131 ◽  
Author(s):  
Lan Lan Jiang ◽  
Yong Chen Song ◽  
Yu Liu ◽  
Yue Chao Zhao ◽  
Ning Jun Zhu ◽  
...  

This paper presents the single flow in porous media to investigate CO2 flow velocity in porous media.We used high resolution MRI to visualize the fluid flow distribution and measure axial mean velocity in porous media.In the experiment, the porous media sample was packed with glass beads, with a porosity of around 0.4. Based the traditional spin echo sequence, we modified the sequence with flow encoding gradients in the flow direction .The sample was saturated. The water flow rates were 1ml/min、2ml/min、3ml/min and 5ml/min,respectively. First, the sequence was calibrated by pipe flow without porous media. As expected, the experimental images show parabolic velocity distribution. The velocity in the centre is high. Then the sample was measured with the same sequence. The images show that the velocity distribution is homogeneous in the porous media. In the boundary of the sample, the velocities are low because of wall-effect. Moreover, the mean velocities calculated from MRI images agree with the real velocities.These errors between calculated velocities and real velocities are small. It may be reduced by changing the experiment conditions.MRI is a useful technology for measuring flow in porous media.


2015 ◽  
Vol 29 (19) ◽  
pp. 1550135 ◽  
Author(s):  
Xiao-Hua Tan ◽  
Xiao-Ping Li ◽  
Jian-Yi Liu ◽  
Lie-Hui Zhang ◽  
Jianchao Cai

A model for transient flow in porous media embedded with randomly distributed tree-shaped fractal networks was presented based on the fractal properties of tree-shaped capillaries and generalized Darcy's law. The dimensionless expression of flowing pressure was developed using the Laplace transform and Stehfest numerical inversion method. The bilogarithmic type curves were illustrated and the influences of different fractal factors on dimensionless flowing pressure were also discussed. The presented study indicated that the fractal characteristics for the tree-shaped fractal networks should be considered in analysis of transient flow in the heterogeneous porous media. The proposed model may be conducible to a better understanding of the mechanism for transient flow in the multi-porosity porous media.


Sign in / Sign up

Export Citation Format

Share Document