scholarly journals Climatic Variability and Periodicity for Upstream Sub-Basins of the Yangtze River, China

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 842 ◽  
Author(s):  
Naveed Ahmed ◽  
Genxu Wang ◽  
Martijn J. Booij ◽  
Adeyeri Oluwafemi ◽  
Muhammad Zia-ur-Rahman Hashmi ◽  
...  

The headwaters of the Yangtze River are located on the Qinghai Tibetan Plateau, which is affected by climate change. Here, treamflow trends for Tuotuohe and Zhimenda sub-basins and relations to temperature and precipitation trends during 1961–2015 were investigated. The modified Mann–Kendall trend test, Pettitt test, wavelet analysis, and multivariate correlation analysis was deployed for this purpose. The temperature and precipitation significantly increased for each sub-basin, and the temperature increase was more significant in Tuotuohe sub-basin as compared to the Zhimenda sub-basin. A statistically significant periodicity of 2–4 years was observed for both sub-basins in different time spans. Higher flow periodicities for Tuotuohe and Zhimenda sub-basin were found after 1991 and 2004, respectively, which indicates that these are the change years of trends in streamflows. The influence of temperature on streamflow is more substantial in Tuotuohe sub-basin, which will ultimately impact the melting of glaciers and snowmelt runoff in this sub-basin. Precipitation plays a more critical role in the Zhimenda streamflow. Precipitation and temperature changes in the headwaters of the Yangtze River will change the streamflow variability, which will ultimately impact the hydropower supply and water resources of the Yangtze Basin. This study contributes to the understanding of the dynamics of the hydrological cycle and may lead to better hydrologic system modeling for downstream water resource developments.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingyan Xie ◽  
Jianping Li ◽  
Yufei Zhao

The Qinghai-Tibet Plateau (QTP) holds massive freshwater resources and is one of the most active regions in the world with respect to the hydrological cycle. Soil moisture (SM) plays a critical role in hydrological processes and is important for plant growth and ecosystem stability. To investigate the relationship between climatic factors (air temperature and precipitation) and SM during the growing season in various climate zones on the QTP, data from three observational stations were analyzed. The results showed that the daily average (Tave) and minimum air temperatures (Tmin) significantly influenced SM levels at all depths analyzed (i.e., 10, 20, 30, 40, and 50 cm deep) at the three stations, and Tmin had a stronger effect on SM than did Tave. However, the daily maximum air temperature (Tmax) generally had little effect on SM, although it had showed some effects on SM in the middle and deeper layers at the Jiali station. Precipitation was an important factor that significantly influenced the SM at all depths at the three stations, but the influence on SM in the middle and deep layers lagged the direct effect on near-surface SM by 5–7 days. These results suggest that environment characterized by lower temperatures and higher precipitation may promote SM conservation during the growing season and in turn support ecosystem stability on the QTP.


2018 ◽  
Vol 10 (9) ◽  
pp. 3026 ◽  
Author(s):  
Feiyan Chen ◽  
Aiwen Lin ◽  
Hongji Zhu ◽  
Jiqiang Niu

The interactions between climate change and vegetation have a significant impact on the dynamics of the global carbon cycle. Based on the observed meteorological data from 1961 to 2013 and the temperature and precipitation data simulated by various climate models (simulations phase 5 of the Climate Model Intercomparison Project dataset), this paper analyzes the temperature and precipitation changes of the Yangtze River Basin (YRB) and finds that they are a similar trend, that is, the temperature presents a significant upward trend (R2 = 0.49, p < 0.01), and the variation trend of precipitation is not significant (R2 = 0.01). Specifically, based on observed meteorological data, the annual mean temperature increased significantly and the area of increasing temperature accounted for 99.94% of the total region (p < 0.05); however, there was no significant change in annual precipitation. Ecological indicators (normalized difference vegetation index (NDVI); enhanced vegetation index (EVI); leaf area index (LAI); gross primary production (GPP); and net primary production (NPP)) of the YRB showed an increasing trend, and annual NDVI, annual EVI, LAI, annual total GPP and annual total NPP increased at respective rates of 0.002 yr−1, 0.001 yr−1, 0.07 m2m−2decade−1, 9 TgCyr−1yr−1, and 6 TgCyr−1yr−1, respectively. Correlation analysis between temperature/precipitation and NDVI/EVI/LAI/GPP/NPP was used to determine the relationships between climatic parameters and ecological indicators. Specifically, the temperature is significantly positively correlated with annual NDVI (R2 = 0.37, p < 0.05), with annual mean LAI (R2 = 0.35, p < 0.05) and with annual GPP (R2 = 0.37, p < 0.05). In addition, there is a moderate positive correlation between mean EVI and mean growing season air temperature (R2 = 0.24); annual mean air temperature is a moderate positive correlation with annual NPP (R2 = 0.28). Our findings confirm that temperature is more closely related to ecological factors than precipitation over the YRB in these decades.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaowei Yao ◽  
Zhanqi Wang ◽  
Hua Wang

Land-use/land cover change (LUCC) is one of the fundamental causes of global environmental change. In recent years, understanding the regional climate impact of LUCC has become a hot-discussed topic worldwide. Some studies have explored LUCC impact on regional climate in specific cities, provinces, or farming areas. However, the quick-urbanized areas, which are highly influenced by human activities, have the most severe land-use changes in developing countries, and their climatic impact cannot be ignored. This study aims to identify the impact of land-use change coupled with urbanization on regional temperature and precipitation in the metropolitan areas of middle and lower reaches of the Yangtze River in China by means of spatial analysis and numeric methods. Based on the exploration of land-use change and climate change during 1988–2008, the impact of land-use transition from non-built-up area to built-up area on temperature and precipitation was analyzed. The results indicated that the land-use conversion has affected the regional temperature with an increasing effect in the study area, while the influence on precipitation was not so significant. The results can provide useful information for spatial planning policies in consideration of regional climate change.


2013 ◽  
Vol 26 (14) ◽  
pp. 5061-5071 ◽  
Author(s):  
Yan-Fang Sang ◽  
Zhonggen Wang ◽  
Changming Liu ◽  
Tongliang Gong

Abstract Variability of the climate in the headwater drainage basins of the Yangtze River and Yellow River during 1961–2010 was investigated by examining four typical climatic variables: daily minimum, mean, and maximum temperatures and daily precipitation. The results indicate that the temporal trends vary among the climatic variables and the time periods examined. The increase in daily minimum temperature began later than the daily mean and maximum temperatures, but the increase rate of the former was relatively greater after 1985. The abrupt increases in precipitation that occurred near 1978 were much clearer than the three temperature variables. Four dominant periodicities (3, 7, 11, and 18–20 yr) of temperature and precipitation were identified, and these variation patterns directly determined the periodic discharge variations in the two rivers. Under climate change impacts, periodic variations in temperature and precipitation at long temporal scales were intensified after the 1980s. Comparatively, climate change more severely impacts the minimum temperature and precipitation than the maximum and mean temperatures in the study area, and the variability of daily precipitation is more complex than the three temperature variables. Overall, the headwater drainage basin of the Yellow River is more susceptible to climate change compared with the other basin. After 2008, the increase rate of temperature (especially the daily mean and minimum temperatures) became greater, and precipitation showed a downward trend in the study areas. These trends are unfavorable for the safety of water resources and for eco-environmental safety in the two basins.


Sign in / Sign up

Export Citation Format

Share Document