scholarly journals Flood Risk Assessments: Applications and Uncertainties

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2096
Author(s):  
Andrés Díez-Herrero ◽  
Julio Garrote

The present Special Issue brought together recent research findings in Flood Risk Assessments (FRA) and contains contributions on advanced techniques and real cases where FRA have been carried out. The 16 research contributions highlight various processes and related topics where FRA have been applied and the main benefits and improved knowledge derived from them, as well as their replicability in other study sites. The published papers can be classified into three major categories. (a) First, there are those papers focused on improving the methods and results of FRA over different scenarios of both flooding types (river flooding or flash flooding) and flooding areas (urban, non-urban, small mountain communities). (b) Second, there are studies that investigate the application of FRA to diverse topics such as “land urban planning” or “vulnerable infrastructure management (dams, power plants)”. (c) Finally, there is a third group of papers which are focused on the assessment of the sources of uncertainties in FRA, with the aim of improving the results and making it more consistent with the real world.

2020 ◽  
Vol 2020 (2) ◽  
pp. 50-56
Author(s):  
Mariya Berberova ◽  
Vladislav Chuenko ◽  
Oleg Zolotarev ◽  
Olga Trefilova ◽  
Maksim Grudev ◽  
...  

Nuclear power plants (NPP), being complex technological systems, represent a source of increased risk, in particular, a specific risk of radiation exposure. Obtaining quantitative assessments of radiation risk is critical for risk reduction and accident prevention. Existing methods for assessing radiation risk do not take into account the influence of external factors, such as population composition, geographical features, anthropogenic environmental changes, etc.[1]. Since 1997, in connection with changes in the norms and rules in the field of the use of atomic energy, it became necessary to perform a probabilistic safety analysis (PSA) at all nuclear power plants in Russia. Subsequently, a standard safety data sheet for a hazardous facility was developed. To fill out the second section of the safety data sheet, it is necessary to carry out a risk assessment of the objects in question. From this moment on, risk assessments were performed for all power units of all operating nuclear power plants in Russia. Today, in our country there are 14 nuclear power plants. On average, there are 3 power units per nuclear power plant. In order to systematize and centralize data on NPP risk assessments, it became necessary to develop a program for monitoring NPP safety. The aim of the work is to develop a monitoring (control) program for ensuring the safety of nuclear power plants, using modern technologies to systematize and group data on nuclear safety data sheets, as well as organize quick access to information.


Author(s):  
Yasser Hamdi ◽  
Emmanuel Garnier ◽  
Nathalie Giloy ◽  
Claire-Marie Duluc ◽  
Vincent Rebour

Abstract. This paper aims to demonstrate the technical feasibility of a historical study devoted to French Nuclear Power Plants (NPPs) which can be prone to the extreme marine flooding events. It has been shown in the literature that the use of HI can significantly improve the probabilistic and statistical modeling of extreme events. There is a significant lack of historical data about marine flooding (storms and storm surges) compared to river flooding events. To address this data scarcity and to improve the estimation of the risk associated to the marine flooding hazards, a dataset of historical storms and storm surges that hit the Nord-Pas-de-Calais region during the five past centuries were recovered from archival sources, examined and used in a frequency analysis (FA) in order to assess its impact on the frequency estimations. This work on the Dunkirk site (representative of the Gravelines NPP) is a continuation of previous work performed on the La Rochelle site in France. Indeed, the frequency model (FM) used in the present paper had some success in the field of coastal hazards and it has been applied in previous studies to surge datasets to prevent marine flooding in the La Rochelle region in France. In a first step, only information collected from the literature (published reports, journal papers and PhD theses) is considered. A 1954 Coastal Engineering journal issue (Le Gorgeu and Guitonneau, 1954) on the reconstruction of the eastern dyke in Dunkirk has been more than a reference for this paper. It has indeed served as a main source of historical information (HI) in this study. Although this first historical dataset has extended the gauged record back in time to 1897, serious questions related to the exhaustiveness of the information and about the validity of the developed FM have remained unanswered. Additional qualitative and quantitative HI were extracted in a second step from many older archival sources. This work has led to the construction of storms and marine flooding sheets summarizing key data on each identified event. The quality control and the cross-validation of the collected information, which have been carried out systematically, indicate that it is valid and complete as regards extreme storms and storm surges. Most of the HI gathered displays a good agreement with other archival sources and documentary climate reconstructions. The probabilistic and statistical analysis of a dataset containing an exceptional observation considered as an outlier (i.e. the 1953 storm surge) has been significantly improved when the additional HI gathered in both literature and archives are used. As the historical data tend to be extreme, the right tail of the distribution has been reinforced and the 1953 exceptional event don't appear as an outlier any more. This new dataset provides a valuable source of information on storm surges for future characterization of coastal hazards.


2013 ◽  
Vol 17 (5) ◽  
pp. 1871-1892 ◽  
Author(s):  
H. C. Winsemius ◽  
L. P. H. Van Beek ◽  
B. Jongman ◽  
P. J. Ward ◽  
A. Bouwman

Abstract. There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.


Author(s):  
Anne Ton ◽  
Vincent Vuik ◽  
Rinse Wilmink ◽  
Stefan Aarninkhof

Sandy foreshores play an important role in flood risk reduction in areas near seacoasts, estuaries and lakes. The morphodynamics of sandy foreshores or beaches in lakes, known as low-energy, non-tidal environments, have not been studied as extensively as open coasts. The goal of this research is to understand the relation between hydrodynamics and morphology on sandy lake beaches. At our four study sites, a sub aqueous horizontal platform evolved of which the elevation stabilizes over time. We conclude that the eventual elevation of these platforms is located at the depth of closure. Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/7TbmH3hXnDE


2012 ◽  
Vol 12 (1) ◽  
pp. 1401-1418 ◽  
Author(s):  
K. Krüger ◽  
B. Quack

Abstract. This special issue provides an overview of scientific results from the TransBrom Sonne expedition in the tropical West Pacific, conducted during October 2009. The ship cruise was part of the national research project TransBrom Sonne, investigating very short lived bromine compounds in the ocean and their transport pathways into the stratosphere. For this purpose chemical and biological parameters were analysed in the ocean and the atmosphere, accompanied by intense meteorological measurements, to derive more insights in this multidisciplinary research field. This introduction paper presents the scientific goals and the meteorological and oceanographic background. The main research findings of the TransBrom Sonne expedition are highlighted.


Author(s):  
Andrea Sandra Brear

Businesses and individuals have experienced multiple crises that have led to major financial and developmental impacts for entrepreneurs and small and medium sized enterprises (SMEs). Researchers believe that entrepreneurs should be innovative through means of resilience skills, risk management, and identifying new opportunities. This chapter aims to investigate entrepreneurial resilience during crisis episodes, investigating the development of resilience and how it helps a business survive a crisis episode while considering the likelihood that entrepreneurial resilience and risk management are linked, how it is linked, and if it can be improved and utilised for success. An anonymous survey was conducted to investigate how entrepreneurs have been impacted by the pandemic, their attitudes surrounding risk assessments, and how their adaptations and innovations impacted the development and survival of their business. The conclusion discusses research findings and suggestions to support the survival of entrepreneurs and SMEs during crisis episodes.


2020 ◽  
Vol 20 (4) ◽  
pp. 967-979 ◽  
Author(s):  
Ayse Duha Metin ◽  
Nguyen Viet Dung ◽  
Kai Schröter ◽  
Sergiy Vorogushyn ◽  
Björn Guse ◽  
...  

Abstract. Flood risk assessments are typically based on scenarios which assume homogeneous return periods of flood peaks throughout the catchment. This assumption is unrealistic for real flood events and may bias risk estimates for specific return periods. We investigate how three assumptions about the spatial dependence affect risk estimates: (i) spatially homogeneous scenarios (complete dependence), (ii) spatially heterogeneous scenarios (modelled dependence) and (iii) spatially heterogeneous but uncorrelated scenarios (complete independence). To this end, the model chain RFM (regional flood model) is applied to the Elbe catchment in Germany, accounting for the spatio-temporal dynamics of all flood generation processes, from the rainfall through catchment and river system processes to damage mechanisms. Different assumptions about the spatial dependence do not influence the expected annual damage (EAD); however, they bias the risk curve, i.e. the cumulative distribution function of damage. The widespread assumption of complete dependence strongly overestimates flood damage of the order of 100 % for return periods larger than approximately 200 years. On the other hand, for small and medium floods with return periods smaller than approximately 50 years, damage is underestimated. The overestimation aggravates when risk is estimated for larger areas. This study demonstrates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.


Sign in / Sign up

Export Citation Format

Share Document