scholarly journals A framework for global river flood risk assessments

2013 ◽  
Vol 17 (5) ◽  
pp. 1871-1892 ◽  
Author(s):  
H. C. Winsemius ◽  
L. P. H. Van Beek ◽  
B. Jongman ◽  
P. J. Ward ◽  
A. Bouwman

Abstract. There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.

2012 ◽  
Vol 9 (8) ◽  
pp. 9611-9659 ◽  
Author(s):  
H. C. Winsemius ◽  
L. P. H. Van Beek ◽  
B. Jongman ◽  
P. J. Ward ◽  
A. Bouwman

Abstract. There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate. The framework estimates hazard at high resolution (~1 km2) using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood routing model, and importantly, a flood extent downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case-study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard and damage estimates has been performed using the Dartmouth Flood Observatory database and damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 420
Author(s):  
Zening Wu ◽  
Yuhai Cui ◽  
Yuan Guo

With the progression of climate change, the intensity and frequency of extreme rainfall have increased in many parts of the world, while the continuous acceleration of urbanization has made cities more vulnerable to floods. In order to effectively estimate and assess the risks brought by flood disasters, this paper proposes a regional flood disaster risk assessment model combining emergy theory and the cloud model. The emergy theory can measure many kinds of hazardous factor and convert them into unified solar emergy (sej) for quantification. The cloud model can transform the uncertainty in flood risk assessment into certainty in an appropriate way, making the urban flood risk assessment more accurate and effective. In this study, the flood risk assessment model combines the advantages of the two research methods to establish a natural and social dual flood risk assessment system. Based on this, the risk assessment system of the flood hazard cloud model is established. This model was used in a flood disaster risk assessment, and the risk level was divided into five levels: very low risk, low risk, medium risk, high risk, and very high risk. Flood hazard risk results were obtained by using the entropy weight method and fuzzy transformation method. As an example for the application of this model, this paper focuses on the Anyang region which has a typical continental monsoon climate. The results show that the Anyang region has a serious flood disaster threat. Within this region, Linzhou County and Anyang County have very high levels of risk for flood disaster, while Hua County, Neihuang County, Wenfeng District and Beiguan District have high levels of risk for flood disaster. These areas are the core urban areas and the economic center of local administrative regions, with 70% of the industrial clusters being situated in these regions. Only with the coordinated development of regional flood control planning, economy, and population, and reductions in the uncertainty of existing flood control and drainage facilities can the sustainable, healthy and stable development of the region be maintained.


2016 ◽  
Vol 11 (6) ◽  
pp. 1128-1136 ◽  
Author(s):  
Youngjoo Kwak ◽  
◽  
Yoichi Iwami ◽  

Globally, large-scale floods are one of the most serious disasters, considering increased frequency and intensity of heavy rainfall. This is not only a domestic problem but also an international water issue related to transboundary rivers in terms of global river flood risk assessment. The purpose of this study is to propose a rapid flood hazard model as a methodological possibility to be used on a global scale, which uses flood inundation depth and works reasonably despite low data availability. The method is designed to effectively simplify complexities involving hydrological and topographical variables in a flood risk-prone area when applied in an integrated global flood risk assessment framework. The model was used to evaluate flood hazard and exposure through pixel-based comparison in the case of extreme flood events caused by an annual maximum daily river discharge of 1/50 probability of occurrence under the condition of climate change between two periods, Present (daily data from 1980 to 2004) and Future (daily data from 2075 to 2099). As preliminary results, the maximum potential extent of inundation area and the maximum number of affected people show an upward trend in Present and Future.


2020 ◽  
Vol 20 (3) ◽  
pp. 851-859 ◽  
Author(s):  
C. J. Rubio ◽  
I. S. Yu ◽  
H. Y. Kim ◽  
S. M. Jeong

Abstract This study focuses on index-based flood risk assessment in Metro Manila, the capital region of the Philippines and most densely populated region in the country. Its objective is to properly address urban characteristics in flood risk assessment by introducing a specific urban-type set of physical, social, economic and ecological indicators. Analytical hierarchy process (AHP) was used to quantify the optimal selection weights for each of the selected 14 indicators. Five levels of flood risk will be presented in spatial maps using geographic information system (GIS) ranging from Very Low Risk to Very High Risk. Results of this study are expected to aid in understanding flood hazard and risk in Metro Manila. Moreover, the resulting flood risk information can be used as a decision tool in policy making, land-use planning, developing guidelines and countermeasures and flood disaster insurance.


2019 ◽  
Vol 4 (1) ◽  
pp. 225-244 ◽  
Author(s):  
Md Abdullah Al Baky ◽  
Muktarun Islam ◽  
Supria Paul

AbstractThis study is concerned with flood risk that can be assessed by integrating GIS, hydraulic modelling and required field information. A critical point in flood risk assessment is that while flood hazard is the same for a given area in terms of intensity, the risk could be different depending on a set of conditions (flood vulnerability). Clearly, risk is a function of hazard and vulnerability. This study aims to introducing a new approach of assessing flood risk, which successfully addresses this above-mentioned critical issue. The flood risk was assessed from flood hazard and vulnerability indices. Two-dimensional flood flow simulation was performed with Delft3D model to compute floodplain inundation depths for hazard assessment. For the purpose of flood vulnerability assessment, elements at risk and flood damage functions were identified and assessed, respectively. Then, finally flood risk was assessed first by combining replacement values assessed for the elements and then using the depth–damage function. Applying this approach, the study finds that areas with different levels of flood risk do not always increase with the increase in return period of flood. However, inundated areas with different levels of flood depth always increase with the increase in return period of flood. The approach for flood risk assessment adopted in this study successfully addresses the critical point in flood risk study, where flood risk can be varied even after there is no change in flood hazard intensity.


Geosciences ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 371 ◽  
Author(s):  
Adrian Schmid-Breton ◽  
Gesa Kutschera ◽  
Ton Botterhuis ◽  
The ICPR Expert Group ‘Flood Risk Analysis’ (EG HIRI)

To determine the effects of measures on flood risk, the International Commission for the Protection of the Rhine (ICPR), supported by the engineering consultant HKV has developed a method and a GIS-tool named “ICPR FloRiAn (Flood Risk Analysis)”, which enables the broad-scale assessment of the effectiveness of flood risk management measures on the Rhine, but could be also applied to other rivers. The tool uses flood hazard maps and associated recurrence periods for an overall damage and risk assessment for four receptors: human health, environment, culture heritage, and economic activity. For each receptor, a method is designed to calculate the impact of flooding and the effect of measures. The tool consists of three interacting modules: damage assessment, risk assessment, and measures. Calculations using this tool show that the flood risk reduction target defined in the Action Plan on Floods of the ICPR in 1998 could be achieved with the measures already taken and those planned until 2030. Upon request, the ICPR will provide this tool and the method to other river basin organizations, national authorities, or scientific institutions. This article presents the method and GIS-tool developed by the ICPR as well as first calculation results.


2017 ◽  
Vol 49 (2) ◽  
pp. 438-449 ◽  
Author(s):  
Shaochun Huang ◽  
Fred F. Hattermann

Abstract To bridge the gap between 1D and 2D hydraulic models for regional scale assessment and global river routing models, we coupled the CaMa-Flood (Catchment-based Macro-scale Floodplain) model and the regional hydrological model SWIM (Soil and Water Integrated Model) as a tool for large-scale flood risk assessments. As a proof-of-concept study, we tested the coupled models in a meso-scale catchment in Germany. The Mulde River has a catchment area of ca. 6,171 km2 and is a sub-catchment of the Elbe River. The modified CaMa-Flood model routes the sub-basin-based daily runoff generated by SWIM along the river network and estimates the river discharge as well as flood inundation areas. The results show that the CaMa-Flood hydrodynamic algorithm can reproduce the daily discharges from 1991 to 2003 well. It outperforms the Muskingum flow routing method (the default routing method in the SWIM) for the 2002 extreme flood event. The simulated flood inundation area in August 2002 is comparable with the observations along the main river. However, problems may occur in upstream areas. The results presented here show the potential of the coupled models for flood risk assessments along large rivers.


2021 ◽  
Vol 12 (2) ◽  
pp. 269-291
Author(s):  
Alisa Sahu ◽  
Tushar Bose ◽  
Dipak R. Samal

Urban flooding is growing as a serious development challenge for cities. Urbanization demands the conversion of pervious land to impervious land by pushing the transformation of water bodies, flood plains, wetlands and green spaces into built-up spaces. This affects the hydrological setting of the city’s geographic area. Bhubaneswar, one of the first planned cities of independent India, has expanded rapidly with an increase in the settlement land use cover from 41 km2 to 81 km2 in the last two decades. Non-consideration of disaster risk assessment in the land use plan has placed the city at high disaster risk. Hence, this article explores various avenues for making a flood resilient city through spatial planning. To understand the flood and its consequences, a flood hazard and vulnerability map was prepared by overlaying the existing social and infrastructure networks, and flood risk zones were generated through analytical spatial modelling in GIS. This accounts for the areas in which flood hazards are expected to occur, as well as the area whose socio-economic and infrastructure susceptibility to the disaster is more. The key outcome is to ensure urban development that can work concurrently with nature by integrating disaster risk reduction strategies into land use planning.


Sign in / Sign up

Export Citation Format

Share Document