scholarly journals Nitrogen and Phosphorus Concentration Thresholds toward Establishing Water Quality Criteria for Pennsylvania, USA

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3550
Author(s):  
John W. Clune ◽  
J. Kent Crawford ◽  
Elizabeth W. Boyer

Nutrient enrichment is currently a leading cause of impairment to streams in Pennsylvania. Evaluating the water quality condition and eutrophic status of streams and rivers is a challenge without established thresholds for nutrient concentrations, which can vary depending on climate and landscape characteristics. The US Environmental Protection Agency (USEPA) has published nutrient criteria for nutrient ecoregions nationwide that are used as regional baseline values; and has encouraged states to develop more refined values if better data are available. In this study, we quantified long-term nutrient concentrations observed in streams and rivers across Pennsylvania using a robust water quality dataset compiled from monitoring data collected over the past two decades (2000–2019) by multiple agencies. We estimated nutrient criteria concentration thresholds for each ecoregion using USEPA’s percentile approach. The 25th percentile median concentrations observed in streams and rivers ranged from 0.27 to 2.30 mg/L for total nitrogen (TN), and from 0.010 to 0.053 mg/L for total phosphorus (TP). The percent of sites with available data that exceeded the 25th percentile was 53% for TN and 60% for TP, reflecting longstanding problems with nutrient pollution of rivers and streams in Pennsylvania. The 25th percentile may overestimate background condition levels, as nutrient conditions vary substantially within and among ecoregions. We compared our contemporary concentrations at the threshold values to other published recommended criteria for the region and explored the influence of landscape heterogeneity and seasonality on nutrient concentrations. The spatial and temporal variability of nutrient conditions emphasizes the importance of using percentile analysis as only a guide toward more robust response-based methods, rather than as a method for setting nutrient criteria in Pennsylvania. Our results provide environmental managers with new insights regarding the status of nutrient conditions in streams and rivers across Pennsylvania ecoregions toward further developing numeric nutrient criteria.

2008 ◽  
Vol 7 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Alexandria B. Boehm ◽  
Nicholas J. Ashbolt ◽  
John M. Colford ◽  
Lee E. Dunbar ◽  
Lora E. Fleming ◽  
...  

The United States Environmental Protection Agency is committed to developing new recreational water quality criteria for coastal waters by 2012 to provide increased protection to swimmers. We review the uncertainties and shortcomings of the current recreational water quality criteria, describe critical research needs for the development of new criteria, as well as recommend a path forward for new criteria development. We believe that among the most needed research needs are the completion of epidemiology studies in tropical waters and in waters adversely impacted by urban runoff and animal feces, as well as studies aimed to validate the use of models for indicator and pathogen concentration and health risk predictions.


2018 ◽  
Vol 10 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Joseph Stachelek ◽  
Chanse Ford ◽  
Dustin Kincaid ◽  
Katelyn King ◽  
Heather Miller ◽  
...  

Abstract. Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey (NES) database is currently only available as scans of the original reports (PDF files) with no embedded character information. This limits its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents. The NES data were collected by the US Environmental Protection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance procedures to make these data available for analysis. The performance of the optical character recognition protocol was found to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to strike a balance between efficiency and data quality by combining entry of data by hand with digital transcription technologies. The finished database contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous US (Stachelek et al., 2017, https://doi.org/10.5063/F1639MVD). Ultimately, this database could be combined with more recent studies to generate meta-analyses of water quality trends and spatial variation across the continental US.


2017 ◽  
Author(s):  
Joseph Stachelek ◽  
Chanse Ford ◽  
Dustin Kincaid ◽  
Katelyn King ◽  
Heather Miller ◽  
...  

Abstract. Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey database is currently only available as scans of the original reports (PDF files) with no embedded character information. This limits its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents. These data were collected by the United States Environmental Protection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance procedures to make these data available for analysis. The performance of the optical character recognition protocol was found to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to strike a balance between efficiency and data quality by combining hand-entry of data with digital transcription technologies. The finished database contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous United States (https://doi.org/10.5063/F1KK98R5). Ultimately, this database could be combined with more recent studies to generate metadata analyses of water quality trends and spatial variation across the continental United States.


2011 ◽  
Vol 45 (2) ◽  
pp. 88-100 ◽  
Author(s):  
Paul Bienfang ◽  
Suzanne DeFelice ◽  
Edward A. Laws

AbstractThe spatial and temporal variability of water quality within aquatic habitats in the Kaloko-Honokohau National Historical Park was examined over a 2-year period to quantitatively establish water quality benchmarks against which future data might be compared to test for evidence of anthropogenic impacts. Throughput of low-salinity, high-nutrient groundwater and mixing with high-salinity, low-nutrient seawater caused significant temporal and spatial water quality variability in wells, anchialine pools, and fishponds within the study area. Variable mixing of seawater and freshwater was shown to be the primary determinant of changes in nutrient concentrations in these aquatic habitats, although leaching of basaltic rocks (Si) and biological uptake (N, P) may also influence nutrient concentrations.The anchialine pool data, which evidenced the least variability, were used as input for a Monte Carlo simulation to identify the percentage change in nutrient concentrations that could be detected at a type II error rate of 5% using a nonparametric Kruskal-Wallis test with a type I error rate of 5%. Percentage changes of 8%, 20%, and 42% in silicate, phosphate, and nitrate + nitrite, respectively, were detectable by this criterion; these values represent sensitivity limits for detecting future changes in concentrations that might occur within this system.


2014 ◽  
Vol 16 (3) ◽  
pp. 511-517 ◽  
Author(s):  
Mark C. Rigby ◽  
A. Dennis Lemly ◽  
Russ Gerads

The US Environmental Protection Agency and several U.S. states and Canadian provinces are currently developing national water quality criteria for selenium that are based in part on toxicity tests performed by feeding freshwater fish a selenomethionine-spiked diet which may lead to a biased assessment of selenium toxicity under field conditions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10808
Author(s):  
Hiroki Namba ◽  
Yuichi Iwasaki ◽  
Kentaro Morita ◽  
Tagiru Ogino ◽  
Hiroyuki Mano ◽  
...  

Researchers have long assessed the ecological impacts of metals in running waters, but few such studies investigated multiple biological groups. Our goals in this study were to assess the ecological impacts of metal contamination on macroinvertebrates and fishes in a northern Japanese river receiving treated mine discharge and to evaluate whether there was any difference between the metrics based on macroinvertebrates and those based on fishes in assessing these impacts. Macroinvertebrate communities and fish populations were little affected at the downstream contaminated sites where concentrations of Cu, Zn, Pb, and Cd were 0.1–1.5 times higher than water-quality criteria established by the U.S. Environmental Protection Agency. We detected a significant reduction in a few macroinvertebrate metrics such as mayfly abundance and the abundance of heptageniid mayflies at the two most upstream contaminated sites with metal concentrations 0.8–3.7 times higher than the water-quality criteria. There were, however, no remarkable effects on the abundance or condition factor of the four dominant fishes, including masu salmon (Oncorhynchus masou). These results suggest that the richness and abundance of macroinvertebrates are more sensitive to metal contamination than abundance and condition factor of fishes in the studied river. Because the sensitivity to metal contamination can depend on the biological metrics used, and fish-based metrics in this study were limited, it would be valuable to accumulate empirical evidence for ecological indicators sensitive to metal contamination within and among biological groups to help in choosing which groups to survey for general environmental impact assessments in metal-contaminated rivers.


2008 ◽  
Vol 5 (4) ◽  
pp. 307 ◽  
Author(s):  
Yamini Gopalapillai ◽  
Chuni L. Chakrabarti ◽  
David R. S. Lean

Environmental context. The release of mining effluents exposes natural waters to excess metals and thereby threatens both human and environmental health. The present study explores the toxicity of aqueous mining effluents collected from a mining area in Sudbury (Ontario, Canada), using two different methods for determination of metal speciation, and an algal toxicity study. The results show reasonable correlation between metal speciation and the observed toxicity and suggest the importance of taking into account other factors related to water quality criteria such as nutrient concentrations, diluent water and presence of other toxic metals that can greatly influence the toxicological result. Abstract. The present study explores the toxicity of aqueous mining and municipal effluents from the Sudbury area (Canada) using equilibrium- and kinetics-based estimates of metal speciation and chronic toxicity studies using algae (Pseudokirchneriella subcapitata). Free metal ion concentration was determined by the Ion Exchange Technique (IET) and a computer speciation code, Windermere Humic Aqueous Model (WHAM) VI. Labile metal concentration was determined using the Competing Ligand Exchange Method. In general, no correlation was found between the observed IC25 (concentration of test substance that inhibits growth of organism by 25%) and the [Ni]labile, [Ni2+]IET or [Ni2+]WHAM, probably because of contributions by other metals such as Cu and Zn being also significant. Reasonable correlation (r2 = 0.7575) was found when the observed toxicity was compared with the sum of free metal ions of Cu, Ni, and Zn predicted by WHAM. The results of the present study reveal the importance of taking into account other factors related to water quality criteria such as nutrient concentrations, diluent water, and the presence of other toxic metals, which greatly influence the toxicological result in complex, multi-metal contaminated waters.


2011 ◽  
Vol 9 (4) ◽  
pp. 718-733 ◽  
Author(s):  
Janet Gooch-Moore ◽  
Kelly D. Goodwin ◽  
Carol Dorsey ◽  
R. D. Ellender ◽  
Joanna B. Mott ◽  
...  

The Gulf of Mexico Alliance (GOMA) was tasked by the five Gulf State Governors to identify major issues affecting the Gulf of Mexico (GoM) and to set priorities for ameliorating these problems. One priority identified by GOMA is the need to improve detection methods for water quality indicators, pathogens and microbial source tracking. The United States Environmental Protection Agency (USEPA) is tasked with revising water quality criteria by 2012; however, the locations traditionally studied by the USEPA are not representative of the GoM and this has raised concern about whether or not the new criteria will be appropriate. This paper outlines a number of concerns, including deadlines associated with the USEPA Consent Decree, which may prevent inclusion of research needed to produce a well-developed set of methods and criteria appropriate for all regulated waters. GOMA makes several recommendations including ensuring that criteria formulation use data that include GoM-specific conditions (e.g. lower bather density, nonpoint sources), that rapid-testing methods be feasible and adequately controlled, and that USEPA maintains investments in water quality research once the new criteria are promulgated in order to assure that outstanding scientific questions are addressed and that scientifically defensible criteria are achieved for the GoM and other regulated waterbodies.


Author(s):  
Ping Wang ◽  
Lewis Linker ◽  
James Collier ◽  
Gary Shenk ◽  
Robert Koroncai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document