scholarly journals Social Dimensions of Projected Climate Change Impacts on Ecosystem Services in the Coastal-Rural Area of Nemunas River Reaches and Curonian Lagoon (Lithuania)

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1114
Author(s):  
Lina Marcinkevičiūtė ◽  
Jolanta Vilkevičiūtė ◽  
Jan Žukovskis ◽  
Rasa Pranskūnienė

The capacity of ecosystems to provide ecosystem services (hereinafter referred to as ES) depends on the state of their structure, processes, and functions, which is determined by interactions with other systems. These interactions are complex and take place in different climatic areas, and have different impacts on ecosystems and the use of ES. As the most sensitive part of the Lithuanian shore zone to climate change is the seaside zone or the coastal zone, which includes the Curonian Lagoon and the sea coast, the said area was therefore chosen for research. The case study examined those ES that were specific to the study area, without attempting to account for absolutely all ES. With an emphasis on the representation of different perspectives (in the process of assessing and preserving the potential of ES), the empirical study involved representatives of different (public and private) sectors. The public sector was represented by elders and eldership employees, the private sector by farmers and businesspeople. Respondents were selected purposefully to reflect the entire existing totality of the existing area. The evaluation of the obtained theoretical and practical results of the research identified the potential of the existing area ecosystem services and perspectives for the implementation of services by assessing their use according to respondents’ opinions, regional climate change, and national scale in EU environmental policy.

2017 ◽  
Vol 17 (6) ◽  
pp. 1563-1568 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Kanta Kumari Rigaud ◽  
Erick Fernandes ◽  
William Hare ◽  
Olivia Serdeczny ◽  
...  

Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.


2012 ◽  
Vol 13 (4) ◽  
pp. 797-811 ◽  
Author(s):  
Gabor Mezösi ◽  
Burghard C. Meyer ◽  
Wolfgang Loibl ◽  
Christoph Aubrecht ◽  
Peter Csorba ◽  
...  

2019 ◽  
Vol 154 (3-4) ◽  
pp. 367-386 ◽  
Author(s):  
Ambarish V. Karmalkar ◽  
Jeanne M. Thibeault ◽  
Alexander M. Bryan ◽  
Anji Seth

2005 ◽  
Vol 360 (1463) ◽  
pp. 2149-2154 ◽  
Author(s):  
Lin Erda ◽  
Xiong Wei ◽  
Ju Hui ◽  
Xu Yinlong ◽  
Li Yue ◽  
...  

A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO 2 ) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO 2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO 2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO 2 concentration elevated to 550 ppm Levels of CO 2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO 2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications.


Sign in / Sign up

Export Citation Format

Share Document