Regional biogeographical model of vegetation zones in doctoral programme Regional Biography in Olomouc (Case study for Norway spruce)

Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.

2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


2013 ◽  
Vol 6 (2) ◽  
pp. 2517-2549 ◽  
Author(s):  
M. Trail ◽  
A. P. Tsimpidi ◽  
P. Liu ◽  
K. Tsigaridis ◽  
Y. Hu ◽  
...  

Abstract. Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (Western US, Texas, Northeastern, and Southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (northeast). We also find that daily peak temperatures tend to increase in most major cities in the US which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.


2021 ◽  
Vol 13 (22) ◽  
pp. 12713
Author(s):  
Nancy Fresco ◽  
Alec Bennett ◽  
Peter Bieniek ◽  
Carolyn Rosner

Ongoing climate change and associated food security concerns are pressing issues globally, and are of particular concern in the far north where warming is accelerated and markets are remote. The objective of this research was to model current and projected climate conditions pertinent to gardeners and farmers in Alaska. Research commenced with information-sharing between local agriculturalists and climate modelers to determine primary questions, available data, and effective strategies. Four variables were selected: summer season length, growing degree days, temperature of the coldest winter day, and plant hardiness zone. In addition, peonies were selected as a case study. Each variable was modeled using regional projected climate data downscaled using the delta method, followed by extraction of key variables (e.g., mean coldest winter day for a given decade). An online interface was developed to allow diverse users to access, manipulate, view, download, and understand the data. Interpretive text and a summary of the case study explained all of the methods and outcomes. The results showed marked projected increases in summer season length and growing degree days coupled with seasonal shifts and warmer winter temperatures, suggesting that agriculture in Alaska is undergoing and will continue to undergo profound change. This presents opportunities and challenges for farmers and gardeners.


2014 ◽  
Vol 6 (1) ◽  
pp. 161-180 ◽  
Author(s):  
Hamid R. Solaymani ◽  
A. K. Gosain

This paper aims to summarize in detail the results of the climate models under various scenarios by temporal and spatial analysis in the semi-arid Karkheh Basin (KB) in Iran, which is likely to experience water shortages. The PRECIS and REMO models, under A2, B2 and A1B scenarios, have been chosen as regional climate models (RCMs). These regional climate models indicate an overall warming in future in KB under various scenarios. The increase in temperature in the dry months (June, July and August) is greater than the increase in the wet months (January, February, March and April). In order to perform climate change impact assessment on water resources, the Arc-SWAT 9.3 model was used in the study area. SWAT (Soil and Water Assessment Tool) model results have been obtained using present and future climate data. There is an overall reduction in the water yield (WYLD) over the whole of the KB. The deficit of WYLD is considerable over the months of April to September throughout KB due to the increase in average temperature and decrease in precipitation under various emission scenarios. Statistical properties in box-and-whisker plots have been used to gain further understanding relevant to uncertainty analysis in climate change impacts. Evaluation of uncertainty has shown the highest uncertain condition under B2.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1114
Author(s):  
Lina Marcinkevičiūtė ◽  
Jolanta Vilkevičiūtė ◽  
Jan Žukovskis ◽  
Rasa Pranskūnienė

The capacity of ecosystems to provide ecosystem services (hereinafter referred to as ES) depends on the state of their structure, processes, and functions, which is determined by interactions with other systems. These interactions are complex and take place in different climatic areas, and have different impacts on ecosystems and the use of ES. As the most sensitive part of the Lithuanian shore zone to climate change is the seaside zone or the coastal zone, which includes the Curonian Lagoon and the sea coast, the said area was therefore chosen for research. The case study examined those ES that were specific to the study area, without attempting to account for absolutely all ES. With an emphasis on the representation of different perspectives (in the process of assessing and preserving the potential of ES), the empirical study involved representatives of different (public and private) sectors. The public sector was represented by elders and eldership employees, the private sector by farmers and businesspeople. Respondents were selected purposefully to reflect the entire existing totality of the existing area. The evaluation of the obtained theoretical and practical results of the research identified the potential of the existing area ecosystem services and perspectives for the implementation of services by assessing their use according to respondents’ opinions, regional climate change, and national scale in EU environmental policy.


2021 ◽  
Vol 899 (1) ◽  
pp. 012026
Author(s):  
C Skoulikaris ◽  
K Kasimis

Abstract Services and uses arising from surface water‘s availability, such as hydropower production, are bound to be affected by climate change. The object of the research is to evaluate climate change impacts on energy generation produced by run-of-river small hydropower plants with the use of future river discharges derived from two up-to-date Regional Climate Models. For doing so, the hydropower simulation model HEC-ResSim, calibrated and validated over real power data, was used to simulate the generated energy in the two future periods of 2031-2060 and 2071-2100. The future river discharges in the case study area are derived from the hydrological model E-HYPE that uses as forcing the climatic variables of the CSC-REMO2009-MPI-ESM-LR and KNMI-RACMO22E-EC-EARTH climate models under two Representative Concentration Pathways, namely RCP4.5 and RCP8.5. The research outputs demonstrate a decrease of the generated energy varying from 2.86% to 25.79% in comparison to the reference period of 1971-2000. However, in most of the simulated scenarios the decrease is less than 10.0%, while increased energy production is projected for one of the scenarios. Overall, it can be concluded that the case study run-of-river small hydropower plant will be marginally affected by climate change when the decrease of the relevant river discharges is up to 10-15%.


2021 ◽  
Author(s):  
Myeong-Ho Yeo ◽  
Van-Thanh-Van Nguyen ◽  
Yong Sang Kim ◽  
Theodore A. Kpodonu

Abstract The estimation of the Intensity-Duration-Frequency (IDF) relations is often necessary for the planning and design of various hydraulic structures and design storms. It has been an increasingly greater challenge due to climate change condition. This paper therefore proposes an integrated extreme rainfall modeling software package (SDExtreme) for constructing the IDF relations at a local site in the context of climate change. The proposed tool is based on a temporal downscaling method to describe the relationships between daily and sub-daily extreme precipitation using the scale-invariance General Extreme Value (GEV) distribution. In addition, SDExtreme provides a modified bootstrap technique to determine confidence intervals (CIs) of the estimated IDF curves for the current and the future climate conditions. The feasibility and accuracy of SDExtreme were assessed using rainfall data available from the selected rain gauge stations in Quebec and Ontario provinces (Canada) and climate simulations under three different climate change scenarios provided by the Canadian Earth System Model (CanESM2) and the Canadian Regional Climate Model (CanRCM4).


2010 ◽  
Vol 6 (5) ◽  
pp. 674-677 ◽  
Author(s):  
Michael R. Kearney ◽  
Natalie J. Briscoe ◽  
David J. Karoly ◽  
Warren P. Porter ◽  
Melanie Norgate ◽  
...  

There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.


Sign in / Sign up

Export Citation Format

Share Document