scholarly journals Microbial Characteristics of the Combined Ozone and Tea Polyphenols or Sodium Hypochlorite Disinfection in the Pipe Network

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1835
Author(s):  
Cuimin Feng ◽  
Na Zhu ◽  
Ying Li ◽  
Zhen Xu ◽  
Ziyu Guo

Microbiological safety of water in the pipe network is an important guarantee for safe drinking water. Simulation tests of stainless steel pipe network were carried out using te4a polyphenols and sodium hypochlorite as auxiliary disinfectants for ozone disinfection to analyze the persistent disinfection effects of different combined disinfection methods by measuring the changes in total bacterial colonies in the water. High-throughput sequencing of microorganisms in the pipe network was performed to analyze the differences in the community structure of microorganisms in the water and pipe wall under different disinfection methods. The results showed that the application of auxiliary disinfectants had a relatively long-lasting inhibitory effect on the bacterial colonies in the water, and the diversity of microorganisms in the pipe network varied significantly. As an auxiliary disinfectant for ozone disinfection, tea polyphenols are more powerful than sodium hypochlorite in killing pathogens and chlorine-resistant bacteria, so they are more beneficial to ensure the microbiological safety of water in stainless steel pipe networks.

Author(s):  
Pauline Bouin ◽  
Antoine Fissolo ◽  
Ce´dric Gourdin

This paper covers work carried out by the French Atomic Energy Commission (CEA) to investigate on mechanisms leading to cracking of piping as a result of thermal loading existing in flow mixing zones. The main purpose of this work is to analyse, with a new experiment and its numerical interpretation, and to understand the mechanism of propagation of cracks in such components. To address this issue, a new specimen has been developed on the basis of the Fat3D experiment. This thermal fatigue test consists in heating a 304L steel pre-cracked tube while cyclically injecting ambient water onto its inner surface. The tube is regularly removed from the furnace for a crack characterisation. Finally, the crack growth is evaluated from the crack length differences between two stops. In parallel, a finite element analysis is developed using the finite element Cast3M code. A pipe with a semi-elliptical crack on its inner surface is modelled. A cyclic thermal loading is imposed on the tube. This loading is in agreement with experimental data. The crack propagates through the thickness. A prediction of the velocity of the crack is finally assessed using a Paris’ law type criteria. Finally, this combined experimental and numerical work on 304L austenitic stainless steel pipes will enable to improve existing methods to accurately predict the crack growth under cyclic thermal loadings in austenitic stainless steel pipe at the design stage.


Sign in / Sign up

Export Citation Format

Share Document