scholarly journals Novel Cosmic Ray Neutron Sensor Accurately Captures Field-Scale Soil Moisture Trends under Heterogeneous Soil Textures

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3038
Author(s):  
Kade D. Flynn ◽  
Briana M. Wyatt ◽  
Kevin J. McInnes

Soil moisture is a critical variable influencing plant water uptake, rainfall-runoff partitioning, and near-surface atmospheric conditions. Soil moisture measurements are typically made using either in-situ sensors or by collecting samples, both methods which have a small spatial footprint or, in recent years, by remote sensing satellites with large spatial footprints. The cosmic ray neutron sensor (CRNS) is a proximal technology which provides estimates of field-averaged soil moisture within a radius of up to 240 m from the sensor, offering a much larger sensing footprint than point measurements and providing field-scale information that satellite soil moisture observations cannot capture. Here we compare volumetric soil moisture estimates derived from a novel, less expensive lithium (Li) foil-based CRNS to those from a more expensive commercially available 3He-based CRNS, to measurements from in-situ sensors, and to four intensive surveys of soil moisture in a field with highly variable soil texture. Our results indicate that the accuracy of the Li foil CRNS is comparable to that of the commercially available sensors (MAD = 0.020 m3 m−3), as are the detection radius and depth. Additionally, both sensors capture the influence of soil textural variability on field-average soil moisture. Because novel Li foil-based CRNSs are comparable in accuracy to and much less expensive than current commercially available CRNSs, there is strong potential for future adoption by land and water managers and increased adoption by researchers interested in obtaining field-scale estimates of soil moisture to improve water conservation and sustainability.

2021 ◽  
Vol 3 ◽  
Author(s):  
Andres Patrignani ◽  
Tyson E. Ochsner ◽  
Benjamin Montag ◽  
Steven Bellinger

During the past decade, cosmic-ray neutron sensing technology has enabled researchers to reveal soil moisture spatial patterns and to estimate landscape-average soil moisture for hydrological and agricultural applications. However, reliance on rare materials such as helium-3 increases the cost of cosmic-ray neutron probes (CRNPs) and limits the adoption of this unique technology beyond the realm of academic research. In this study, we evaluated a novel lower cost CRNP based on moderated ultra-thin lithium-6 foil (Li foil system) technology against a commercially-available CRNP based on BF3 (boron trifluoride, BF-3 system). The study was conducted in a cropped field located in the Konza Prairie Biological Station near Manhattan, Kansas, USA (325 m a.s.l.) from 10 April 2020 to 18 June 2020. During this period the mean atmospheric pressure was 977 kPa, the mean air relative humidity was 70%, and the average volumetric soil water content was 0.277 m3 m−3. Raw fast neutron counts were corrected for atmospheric pressure, atmospheric water vapor, and incoming neutron flux. Calibration of the CRNPs was conducted using four intensive field surveys (n > 120), in combination with continuous observations from an existing array of in situ soil moisture sensors. The time series of uncorrected neutron counts of the Li foil system was highly correlated (r2 = 0.91) to that of the BF-3 system. The Li foil system had an average of 2,250 corrected neutron counts per hour with an uncertainty of 2.25%, values that are specific to the instrument size, detector configuration, and atmospheric conditions. The estimated volumetric water content from the Li foil system had a mean absolute difference of 0.022 m3 m−3 compared to the value from the array of in situ sensors. The new Li foil detector offers a promising lower cost alternative to existing cosmic-ray neutron detection devices used for hectometer-scale soil moisture monitoring.


2020 ◽  
Author(s):  
Hollie M. Cooper ◽  
Emma Bennett ◽  
James Blake ◽  
Eleanor Blyth ◽  
David Boorman ◽  
...  

Abstract. The COSMOS-UK observation network has been providing field scale soil moisture and hydrometeorological measurements across the UK since 2013. At the time of publication a total of 51 COSMOS-UK sites have been established, each delivering high temporal resolution data in near-real time. Each site utilises a cosmic-ray neutron sensor, which counts fast neutrons at the land surface. These measurements are used to derive field scale near-surface soil water content, which can provide unique insight for science, industry, and agriculture by filling a scale gap between localised point soil moisture and large-scale satellite soil moisture datasets. Additional soil physics and meteorological measurements are made by the COSMOS-UK network including precipitation, air temperature, relative humidity, barometric pressure, soil heat flux, wind speed and direction, and components of incoming and outgoing radiation. These near-real time observational data can be used to improve the performance of hydrological models, validate remote sensing products, improve hydro-meteorological forecasting and underpin applications across a range of other scientific fields. The most recent version of the COSMOS-UK dataset is publically available at https://doi.org/10.5285/37702a54-b7a4-40ff-b62e-d14b161b69ca (Stanley et al., 2020).


2020 ◽  
Author(s):  
Surendra Kumar Mishra ◽  
Ishan Sharma ◽  
Ashish Pandey ◽  
Shailendra Kumar Kumre

<p>Modelling of the event-based rainfall-runoff process has considerable importance in Hydrology, especially for assessment of water yield potential of a watershed, planning of soil and water conservation measures, reducing sedimentation, and flooding hazards downstream. Antecedent moisture (M) plays a significant role in governing the rainfall-runoff modelling process. It has been the focal point of research in the last decade for improving the Soil Conservation Service Curve Number (SCS-CN) method (also known as NRCS-CN method) for surface runoff computation. In this study, an innovative procedure is proposed to accommodate M in the basic structure of the SCS-CN methodology which otherwise was incorporated externally; to compute M using rainfall-runoff data and verify its applicability by comparing M with the in-situ soil moisture.</p><p>Natural rainfall, runoff, and soil moisture data from 6 small experimental farms with different land-use viz. Maize, Finger Millet, and Fallow land, located at Roorkee, India, are utilized. The M is computed by optimizing two parameters, i.e., absolute maximum potential retention (S<sub>abs</sub>) and initial abstraction ratio (λ), and the optimization is accomplished by minimizing the root mean square error (RMSE). Results show that there exists a good correlation between theoretical M and measured in-situ moisture. Also, the optimized value of λ has the less error in computing M than the other standard values of λ (λ = 0.2; λ= 0.03). This study not only improves the SCS-CN method but also widens its application horizon in soil moisture studies.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 1737-1757
Author(s):  
Hollie M. Cooper ◽  
Emma Bennett ◽  
James Blake ◽  
Eleanor Blyth ◽  
David Boorman ◽  
...  

Abstract. The COSMOS-UK observation network has been providing field-scale soil moisture and hydrometeorological measurements across the UK since 2013. At the time of publication a total of 51 COSMOS-UK sites have been established, each delivering high-temporal resolution data in near-real time. Each site utilizes a cosmic-ray neutron sensor, which counts epithermal neutrons at the land surface. These measurements are used to derive field-scale near-surface soil water content, which can provide unique insight for science, industry, and agriculture by filling a scale gap between localized point soil moisture and large-scale satellite soil moisture datasets. Additional soil physics and meteorological measurements are made by the COSMOS-UK network including precipitation, air temperature, relative humidity, barometric pressure, soil heat flux, wind speed and direction, and components of incoming and outgoing radiation. These near-real-time observational data can be used to improve the performance of hydrological models, validate remote sensing products, improve hydro-meteorological forecasting, and underpin applications across a range of other scientific fields. The most recent version of the COSMOS-UK dataset is publically available at https://doi.org/10.5285/b5c190e4-e35d-40ea-8fbe-598da03a1185 (Stanley et al., 2021).


2021 ◽  
Author(s):  
Aida Taghavi Bayat ◽  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Christopher Conrad ◽  
...  

<p>The precise estimation and mapping of the near-surface soil moisture (~5cm, SM<sub>5cm</sub>) is key to supporting sustainable water management plans in Mediterranean agroforestry environments. In the past few years, time series of Synthetic Aperture Radar (SAR) data retrieved from Sentinel-1 (S1) enable the estimation of SM<sub>5cm</sub> at relatively high spatial and temporal resolutions. The present study focuses on developing a reliable and flexible framework to map SM<sub>5cm</sub> in a small-scale agroforestry experimental site (~30 ha) in southern Italy over the period from November 2018 to March 2019. Initially, different SAR-based polarimetric parameters from S1 (in total 62 parameters) and hydrologically meaningful topographic attributes from a 5-m Digital Elevation Model (DEM) were derived. These SAR and DEM-based parameters, and two supporting point-scale estimates of SM<sub>5cm</sub> were used to parametrize a Random Forest (RF) model. The inverse modeling module of the Hydrus-1D model enabled to simulate two  supporting estimates of SM<sub>5cm</sub> by using i) sparse soil moisture data at the soil depths of 15 cm and 30 cm acquired over 20 locations comprised in a SoilNet wireless sensor network (SoilNet-based approach), and ii) field-scale soil moisture monitored by a Cosmic-Ray Neutron Probe (CRNP-based approach). In the CRNP-based approach, the field-scale SM<sub>5cm</sub> was further downscaled to obtain point-scale supporting SM<sub>5cm</sub> data over the same 20 positions by using the physical-empirical Equilibrium Moisture from Topography (EMT) model. Our results show that the CRNP-based approach can provide reasonable SM<sub>5cm</sub> retrievals with RMSE values ranging from 0.034 to 0.050 cm³ cm<sup>-3</sup> similar to the ones based on the SoilNet approach ranging from 0.029 to 0.054 cm³ cm<sup>-3</sup>. This study highlights the effectiveness of integrating S1 SAR-based measurements, topographic attributes, and CRNP data for mapping SM<sub>5cm</sub> at the small agroforestry scale with the advantage of being non-invasive and easy to maintain.</p><p> </p>


2016 ◽  
Author(s):  
Shanshui Yuan ◽  
Steven M. Quiring

Abstract. This study provides a comprehensive evaluation of soil moisture simulations in the Coupled Model Intercomparison Project Phase 5 (CMIP5) extended historical experiment (2003 to 2012). Soil moisture from in situ and satellite sources are used to evaluate CMIP5 simulations in the contiguous United States (CONUS). Both near-surface (0–10 cm) and soil column (0–100 cm) simulations from more than 14 CMIP5 models are evaluated during the warm season (April–September). Multi-model ensemble means and the performance of individual models are assessed at a monthly time scale. Our results indicate that CMIP5 models can reproduce the seasonal variability in soil moisture over CONUS. However, the models tend to overestimate the magnitude of both near-surface and soil-column soil moisture in the western U.S. and underestimate it in the eastern U.S. There are large variations in model performance, especially in the near-surface. There are significant regional and inter-model variations in performance. Results of a regional analysis show that in deeper soil layer, the CMIP5 soil moisture simulations tend to be most skillful in the southern U.S. Based on both the satellite-derived and in situ soil moisture, CESM1, CCSM4 and GFDL-ESM2M perform best in the 0–10 cm soil layer and CESM1, CCSM4, GFDL-ESM2M and HadGEM2-ES perform best in the 0–100 cm soil layer.


Geoderma ◽  
2012 ◽  
Vol 170 ◽  
pp. 195-205 ◽  
Author(s):  
Gary C. Heathman ◽  
Michael H. Cosh ◽  
Eunjin Han ◽  
Thomas J. Jackson ◽  
Lynn McKee ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Betsy M. Farris ◽  
Guillaume P. Gronoff ◽  
William Carrion ◽  
Travis Knepp ◽  
Margaret Pippin ◽  
...  

Abstract. During the 2017 Ozone Water Land Environmental Transition Study (OWLETS), the Langley mobile ozone lidar system utilized a new small diameter receiver to improve the retrieval of near-surface signals from 0.1 to 1 km in altitude. This new receiver utilizes a single 90 ∘ fiber-coupled, off-axis parabolic mirror resulting in a compact form that is easy to align. The single reflective surface offers the opportunity to easily expand its use to multiple wavelengths for additional measurement channels such as visible wavelength aerosol measurements. Detailed results compare the performance of the receiver to both ozonesonde and in situ measurements from a UAV platform, validating the performance of the near-surface ozone retrievals. Absolute O3 differences averaged 7 % between lidar and ozonesonde data from 0.1 to 1.0 km and yielded a 2.3 % high bias in the lidar data, well within the uncertainty of the sonde measurements. Conversely, lidar O3 measurements from 0.1 to 0.2 km averaged 10.5 % lower than coincident UAV O3. A more detailed study under more stable atmospheric conditions would be necessary to resolve the residual instrument differences reported in this work. Nevertheless, this unique added capability is a significant improvement allowing for near-surface observation of ozone.


Sign in / Sign up

Export Citation Format

Share Document