scholarly journals Solvothermal Synthesis of ZnO Nanoparticles for Photocatalytic Degradation of Methyl Orange and p-Nitrophenol

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3224
Author(s):  
Ying Wang ◽  
Chuanxi Yang ◽  
Yonglin Liu ◽  
Yuqi Fan ◽  
Feng Dang ◽  
...  

The photocatalytic degradation of organic pollutants is an effective method of controlling environmental pollution. ZnO nanoparticles (ZnO NPs) were prepared by the solvothermal method and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffuse reflectance spectroscopy (UV–Vis DRS). The results showed that the ZnO NPs had a uniform size of 25–40 nm, hexagonal wurtzite structure, and a band gap of 2.99 eV. The photocatalytic degradation of methyl orange (MO) and p-nitrophenol (PNP) was used as a model reaction to evaluate the photocatalytic activity of ZnO NPs. The photocatalytic degradation rates (pseudo-first-order kinetics) of MO and PNP were 92% (0.0128 min−1) and 56.2% (0.0042 min−1), respectively, with a 25 W ultraviolet lamp, MO/PNP concentration = 20 mg/L, ZnO NPs dose = 1.5 g/L, and time = 180 min. The photocatalytic mechanism of ZnO NPs and degradation pathways of MO and PNP were also proposed. The results provide valuable information and guidance for the treatment of wastewater via photocatalytic methods.

2012 ◽  
Vol 624 ◽  
pp. 67-71
Author(s):  
Si Qin Zhao ◽  
Hong Liang Wan ◽  
S. Asuha

Nanowires of sodium titanate, TiO2 and Eu3+/TiO2 were synthesized by hydrothermal method, and their microstructure, optical properties and valence states of exterior elements were characterized by X-ray powder diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectroscopy techniques. At the same time, the photocatalytic activities of the materials for degradation of methyl orange under visible-light irradiation were also investigated. The results showed the formation of nanowires of sodium titanate with average crystallite sizes of 50-200 nm and in lengths from several microns to several dozens microns, and its chemical formula was determined to be Na2Ti3O7. TiO2 and Eu3+ /TiO2nanowires were prepared from the Na2Ti3O7 nanowires via ion exchange (i.e., with H+ and Eu3+ ions) and high temperature sintering processes. These three kinds of nanowires showed different photocatalytic activities for degradation of methyl orange. Na2Ti3O7 nanowire did not show any photocatalytic activity for methyl orange degradation, while TiO2 nanowire was superior to Na2Ti3O7 nanowire; and, Eu3+/ TiO2 nanowire possessed the highest photocatalytic activity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1059
Author(s):  
Piangjai Peerakiatkhajohn ◽  
Teera Butburee ◽  
Jung-Hoon Sul ◽  
Supphasin Thaweesak ◽  
Jung-Ho Yun

ZnO and Aluminum doped ZnO nanoparticles (Al/ZnO NPs) were successfully synthesized by the sol-gel method. Together with the effect of calcination temperatures (200, 300 and 400 °C) and Al dosage (1%, 3%, 5% and 10%) on structural, morphological and optical properties of Al/ZnO NPs, their photocatalytic degradation of methyl orange (MO) dye was investigated. The calcination temperatures at 200, 300 and 400 °C in forming structure of ZnO NPs led to spherical nanoparticle, nanorod and nanoflake structures with a well-crystalline hexagonal wurtzite, respectively. The ZnO NPs calcined at 200 °C exhibited the highest specific surface area and light absorption property, leading to the MO removal efficiency of 80% after 4 h under the Ultraviolet (UV) light irradiation. The MO removal efficiency was approximately two times higher than the nanoparticles calcined at 400 °C. Furthermore, the 5% Al/ZnO NPs exhibited superior MO removal efficiency of 99% in only 40 min which was approximately 20 times enhancement in photocatalytic activity compared to pristine ZnO under the visible light irradiation. This high degradation performance was attributed to the extended light absorption, narrowed band gap and effective suppression of electron–hole recombination through an addition of Al metal.


2021 ◽  
Vol 284 ◽  
pp. 128902 ◽  
Author(s):  
Vy Anh Tran ◽  
Thanh Khoa Phung ◽  
Van Thuan Le ◽  
The Ky Vo ◽  
Tan Tai Nguyen ◽  
...  

2012 ◽  
Vol 616-618 ◽  
pp. 1667-1670
Author(s):  
Ting Tang ◽  
Hong Quan Deng ◽  
Qi Ying Jiang ◽  
Ji Chuan Huo ◽  
Shun Hua Hu

Bi-La composite oxide was prepared by thermal decomposition of molecular precursor of BiLa(dtpa)(NO3)•3.5H2O (dtpa=Diethylene triaminepentaacetic). The effect of calcinated temperature on structure was discussed by X-ray powder diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic performance of samples prepared was discussed through the degradation of methyl orange. The results show that Bi-La composite oxide prepared at 500°C exhibits the best photocatalytic activity for the degradation of methyl orange (20mg/L) and the optimum amount of photocatalyst is 1.0 g/L.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2189
Author(s):  
V. Beena ◽  
S. L. Rayar ◽  
S. Ajitha ◽  
Awais Ahmad ◽  
Munirah D. Albaqami ◽  
...  

The development of cost-effective and ecofriendly approaches toward water purification and antibacterial activity is a hot research topic in this era. Purposely, strontium-doped zinc selenide (Sr-doped ZnSe) nanoparticles, with different molar ratios of Sr2+ cations (0.01, 0.05, and 0.1), were prepared via the co-precipitation method, in which sodium borohydride (NaBH4) and 2-mercaptoethanol were employed as reducing and stabilizing agents, respectively. The ZnSe cubic structure expanded by Sr2+ cations was indicated by X-ray diffraction (XRD) analysis. The absorption of the chemical compounds on the surface was observed via Fourier transform infrared (FT-IR) spectroscopy. The optical orientation was measured by ultraviolet–visible diffused reflectance spectroscopy (UV-DRS) analysis. The surface area, morphology, and elemental purity were analyzed using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive spectroscopy (EDS) analyses. The oxidation state and valency of the synthesized nanoparticles were analyzed using X-ray photoelectron spectroscopy (XPS). Sr-doped ZnSe nanoparticles were investigated for photocatalytic degradation of methyl orange (MO), and their antibacterial potential was investigated against different bacterial strains. The antibacterial activity examined against Staphylococcus aureus and Escherichia coli implied the excellent biological activity of the nanoparticles. Moreover, the Sr-doped ZnSe nanoparticles were evaluated by the successful degradation of methyl orange under visible light irradiation. Therefore, Sr-doped ZnSe nanoparticles have tremendous potential in biological and water remediation fields.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2012 ◽  
Vol 457-458 ◽  
pp. 1169-1172
Author(s):  
Wen Jie Zhang ◽  
Mei Ling Hu ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. When using the applied potential along, there was no obvious degradation of methyl orange whether using TiO2 film electrode prepared using PEG template or not. The largest difference between the two electrodes appears at potential of 0.7 V in 0.05 mol/l NaCl solution, and the porous electrode shows better degradation activity in electro-assisted photocatalytic degradation. When NaCl concentration was 0.07 mol/l, degradation rates on porous and smooth film electrodes were 51.16% and 32.35 %, respectively. After 100 min of irradiation, 90% of the methyl orange degraded on the porous TiO2 film electrode, and 79.87% of the methyl orange degraded on the smooth TiO2 film electrode.


2014 ◽  
Vol 1004-1005 ◽  
pp. 962-966
Author(s):  
Lu Sheng Chen ◽  
Huan Shuang Zhang ◽  
Shu Lian Liu ◽  
Wen Hua Song ◽  
Chao Liu ◽  
...  

In this work, samarium and antimony (Sm–Sb) codoped tin oxide (SnO2) films have been successfully prepared on titanium (Ti) substrate by a facile sol gel method. The samples were characterized by X–ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The composite film materials were used as anode for the electro-degradation of methyl orange solution. Two effective factors of electro–catalytic properties namely, the content of Sm in the SnO2 samples and the calcination temperature, have been optimized based on the electro-degradation experiments. A moderately calcination temperature of 873 K and 1.0% Sm doping owned the best performance. The smaller grain sizes and optical band gap of the SnO2 by introduction of the Sm improved electro-catalytic activity.


2016 ◽  
Vol 73 (7) ◽  
pp. 1746-1755 ◽  
Author(s):  
Roushan Khoshnavazi ◽  
Shler Fereydouni ◽  
Leila Bahrami

The synergistic effect of polyoxometalate (POM) and metal-doped TiO2 (metal = Zr, Y and Ce) was examined, to fabricate nanocomposites with enhanced photocatalytic activities toward the degradation of methyl orange (MO), as a model textile dye. A series of new nanocomposites, containing different loading amounts of H9Na3[WZn3(H2O)2(ZnW9O34)2].24H2O (HZnW) (10–30%) on each of the metal-doped TiO2 nanoparticles, were synthesized using impregnation method. The morphology and crystal phase of the as-prepared nanocomposites were investigated by various characterization techniques: Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis and diffuse reflectance spectroscopy, indicating that the HZnW and metal-doped TiO2 had been successfully incorporated into the nanocomposite structure. The effects of parameters such as loading amount of HZnW, catalyst dose, pH and initial concentration of dye solution were investigated on the degradation kinetics and it was interestingly found that the prepared nanocomposites could efficiently degrade the MO dye in 5–7 min under UV light irradiation. The best results were obtained for the HZnW-Zr-TiO2 among the different nanocomposites. Also, control studies showed the superior photocatalytic properties of composites compared to that of the individual components. The facile preparation and their improved photocatalytic activities suggest that these materials can have a promising future for water and wastewater purifications.


Sign in / Sign up

Export Citation Format

Share Document