scholarly journals Research on Flood Discharge and Energy Dissipation of a Tunnel Group Layout for a Super-High Rockfill Dam in a High-Altitude Region

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3408
Author(s):  
Haichao Zhang ◽  
Luchen Zhang ◽  
Shiqiang Wu ◽  
Fuming Wang ◽  
Zhenggang Zhan ◽  
...  

Under the condition of a large dip angle between the flood discharging structure axis and the downstream cushion pool centerline, the downstream flow connection for the discharging tunnel group is poor, and the lower air pressure in high-altitude areas increases its influence on the trajectory distance of the nappe, further increasing the difficulty of predicting the flood discharge and energy dissipation layout. Based on the RM hydropower project with the world’s highest earth-rockfill dam, this paper studies the problem of a large included angle flip energy dissipation layout of a tunnel group flood discharge using the method of the overall hydraulic physical model test. The test results show that the conventional flip outlet mode has a long nappe falling point, a serious shortage of effective energy dissipation space, a large dynamic hydraulic pressure impact peak value on the bottom slab and side wall of the plunge pool, a poor flow connection between the outlet of the plunge pool and the downstream river channel, and a low energy dissipation rate. Considering the influence of a low-pressure environment, when the “transverse diffusion and downward incidence” outflow is adopted, the nappe falling point shrinks by 11 m, the energy dissipation form of the plunge pool is greatly improved, the effective energy dissipation space is increased by 159%, the RMS of the maximum fluctuating pressure is reduced by 74%, the outflow is smoothly connected with the downstream river, the energy dissipation rate is increased by 0.8%, and the protection range of flood discharge atomization is significantly reduced. This effectively solves the safety problems of large included angle discharge return channels and the energy dissipation and erosion prevention of super-high rockfill dams.

1994 ◽  
Vol 5 (4) ◽  
pp. 537-557 ◽  
Author(s):  
M. Bertsch ◽  
R. Dal Passo ◽  
R. Kersner

We study the semi-empirical b—ε model which describes the time evolution of turbulent spots in the case of equal diffusivity of the turbulent energy density b and the energy dissipation rate ε. We prove that the system of two partial differential equations possesses a solution, and that after some time this solution exhibits self-similar behaviour, provided that the system has self-similar solutions. The existence of such self-similar solutions depends upon the value of a parameter of the model.


2016 ◽  
Vol 46 (2) ◽  
pp. 461-481 ◽  
Author(s):  
Magdalena D. Anguelova ◽  
Paul A. Hwang

AbstractActive and total whitecap fractions quantify the spatial extent of oceanic whitecaps in different lifetime stages. Total whitecap fraction W includes both the dynamic foam patches of the initial breaking and the static foam patches during whitecap decay. Dynamic air–sea processes in the upper ocean are best parameterized in terms of active whitecap fraction WA associated with actively breaking crests. The conventional intensity threshold approach used to extract WA from photographs is subjective, which contributes to the wide spread of WA data. A novel approach of obtaining WA from energy dissipation rate ε is proposed. An expression for WA is derived in terms of energy dissipation rate WA(ε) on the basis of the Phillips concept of breaking crest length distribution. This approach allows more objective determination of WA using the breaker kinematic and dynamic properties yet avoids the use of measuring breaking crest distribution from photographs. The feasibility of using WA(ε) is demonstrated with one possible implementation using buoy data and a parametric model for the energy dissipation rate. Results from WA(ε) are compared to WA from photographic data. Sensitivity analysis quantifies variations in WA estimates caused by different parameter choices in the WA(ε) expression. The breaking strength parameter b has the greatest influence on the WA(ε) estimates, followed by the breaker minimal speed and bubble persistence time. The merits and caveats of the novel approach, possible improvements, and implications for using the WA(ε) expression to extract WA from satellite-based radiometric measurements of W are discussed.


Sign in / Sign up

Export Citation Format

Share Document