scholarly journals Impacts of Future Climate Change and Baltic Sea Level Rise on Groundwater Recharge, Groundwater Levels, and Surface Leakage in the Hanko Aquifer in Southern Finland

Water ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 3671-3700 ◽  
Author(s):  
Samrit Luoma ◽  
Jarkko Okkonen
2012 ◽  
Vol 18 (9) ◽  
pp. 2707-2719 ◽  
Author(s):  
Florian T. Wetzel ◽  
W. Daniel Kissling ◽  
Helmut Beissmann ◽  
Dustin J. Penn

2012 ◽  
Vol 1 (33) ◽  
pp. 60 ◽  
Author(s):  
Peter Froehle

Consequences resulting from future Climate Change may be one of the most severe threats for people and economies in many countries of the world. Besides the problem of sea level rise, also possible general changes in the frequency and intensity of storms as well as general changes in the average wind field are expected for the future. With respect to the coastal protection possible future strategies and also possible future measure are analyzed and assessed with the result that technical, morphological, socio-economic and aesthetical aspects play a role.


Author(s):  
Emojong Amai Mercy ◽  
Eliud Garry Michura

This paper discusses the less publicised but far from less significant, an issue of how the international community’s approach to maritime boundary delimitation will be impacted by climate change resulting in sea level rise with coastal lands submerging affecting the international boundaries and impacting on biodiversity and human survival in the future. The climate change effect is already creating pressure on international law regardless of the direction that the law of the sea takes in remedying this dilemma. It is quite apparent that global disputes and conflicts are arising and solutions are needed urgently. The climate change and the consequent global sea level rise are widely touted to submerge islands and coastlines without discrimination. The international community has been relatively slow to react to what could pose an unprecedented threat to human civilisation.  The policies that have been applied have arguably been reactive and not proactive.  In future climate change may develop other by-products which may not be understood at this moment and may require a proactive approach. Further discussion of the merits of the potential paths is ideal in ensuring that appropriate and well thought-out resolutions are negotiated. Regardless of the outcome, the thorough debate is required to ensure the correct decision is made and that the balancing act between fulfilling states' interests and achieving a meaningful result does not become detrimental to the solidity and the enforceability of the outcome. There is a need to establish a comprehensive framework for ocean governance for management and long-term development and sustainability.


2015 ◽  
Vol 39 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Christopher R. Jackson ◽  
John P. Bloomfield ◽  
Jonathan D. Mackay

We examine the evidence for climate-change impacts on groundwater levels provided by studies of the historical observational record, and future climate-change impact modelling. To date no evidence has been found for systematic changes in groundwater drought frequency or intensity in the UK, but some evidence of multi-annual to decadal coherence of groundwater levels and large-scale climate indices has been found, which should be considered when trying to identify any trends. We analyse trends in long groundwater level time-series monitored in seven observation boreholes in the Chalk aquifer, and identify statistically significant declines at four of these sites, but do not attempt to attribute these to a change in a stimulus. The evidence for the impacts of future climate change on UK groundwater recharge and levels is limited. The number of studies that have been undertaken is small and different approaches have been adopted to quantify impacts. Furthermore, these studies have generally focused on relatively small regions and reported local findings. Consequently, it has been difficult to compare them between locations. We undertake some additional analysis of the probabilistic outputs of the one recent impact study that has produced coherent multi-site projections of changes in groundwater levels. These results suggest reductions in annual and average summer levels, and increases in average winter levels, by the 2050s under a high greenhouse gas emissions scenario, at most of the sites modelled, when expressed by the median of the ensemble of simulations. It is concluded, however, that local hydrogeological conditions can be an important control on the simulated response to a future climate projection.


2011 ◽  
Vol 11 (24) ◽  
pp. 13421-13449 ◽  
Author(s):  
J. Hansen ◽  
M. Sato ◽  
P. Kharecha ◽  
K. von Schuckmann

Abstract. Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.58 ± 0.15 W m−2 during the 6-yr period 2005–2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be −1.6 ± 0.3 W m−2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.


AMBIO ◽  
2015 ◽  
Vol 44 (S3) ◽  
pp. 345-356 ◽  
Author(s):  
Agneta Andersson ◽  
H. E. Markus Meier ◽  
Matyas Ripszam ◽  
Owen Rowe ◽  
Johan Wikner ◽  
...  

2014 ◽  
Vol 16 (2) ◽  
pp. 173-185 ◽  
Author(s):  
Ji Min Lee ◽  
Younghun Jung ◽  
Younshik Park ◽  
Hyunwoo Kang ◽  
Kyoung Jae Lim ◽  
...  

2019 ◽  
Author(s):  
Brooke L. Bateman ◽  
Lotem Taylor ◽  
Chad Wilsey ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

AbstractClimate change is a significant threat to biodiversity globally, compounded by threats that could hinder species’ ability to respond through range shifts. However, little research has examined how future bird ranges may coincide with multiple stressors at a broad scale. Here, we assess the risk to 544 birds in the United States from future climate change threats under a mitigation-dependent global warming scenario of 1.5°C and an unmitigated scenario of 3.0°C. Threats considered included sea level rise, lake level change, human land cover conversion, and extreme weather events. We developed a gridded index of risk based on coincident threats, species richness, and richness of vulnerable species. To assign risk to individual species and habitat groups, we overlaid future bird ranges with threats to calculate the proportion of species’ ranges affected in both the breeding and non-breeding seasons. Nearly all species will face at least one new climate-related threat in each season and scenario analyzed. Even with lower species richness, the 3.0°C scenario had higher risk for species and groups in both seasons. With unmitigated climate change, multiple coincident threats will affect over 88% of the conterminous United States, and 97% of species could be affected by two or more climate-related threats. Some habitat groups will see up to 96% species facing three or more threats. However, climate change mitigation would reduce risk to birds from climate change-related threats across over 90% of the US. Across the threats included here, extreme weather events have the most significant influence on risk and the most extensive spatial coverage. Urbanization and sea level rise will also have disproportionate impacts on species relative to the area they cover. By incorporating threats into predictions of climate change impacts, this assessment provides a comprehensive picture of how climate change will affect birds and the places they need.


Sign in / Sign up

Export Citation Format

Share Document