scholarly journals Assessment of the Impact of Subsurface Agricultural Drainage on Soil Water Storage and Flows of a Small Watershed

Water ◽  
2016 ◽  
Vol 8 (8) ◽  
pp. 326 ◽  
Author(s):  
Mushombe Muma ◽  
Alain Rousseau ◽  
Silvio Gumiere
2009 ◽  
Vol 60 (8) ◽  
pp. 730 ◽  
Author(s):  
P. R. Ward ◽  
K. Whisson ◽  
S. F. Micin ◽  
D. Zeelenberg ◽  
S. P. Milroy

In Mediterranean-type climates, dryland soil water storage and evaporation during the hot and dry summer are poorly understood, particularly for sandy-textured soils. Continued evaporation during summer, and any effects of crop stubble management, could have a significant impact on annual components of the water balance and crop yield. In this research, the effect of wheat stubble management on summer evaporation and soil water storage was investigated for a sandy soil in south-western Australia, during the summers of 2005–06 and 2006–07. Treatments comprised: retained standing stubble; retained flattened stubble; removed stubble; and removed stubble followed by burying the crowns with topsoil from an adjacent area. Under ‘dry’ conditions, evaporation continued at ~0.2 mm/day. In contrast to previous results for finer textured soil types, stubble retention did not decrease the rate of evaporation, but marginally (10–30%) increased evaporation on 7 out of 14 days when measurements were taken. Significant differences due to stubble management were observed in two successive summers, but only for relatively dry soil conditions. There were no significant differences observed for several days after irrigation or rainfall. Under dry conditions in the absence of rainfall, total decrease in water storage during a 90-day summer period could be ~20 mm, but differences attributable to stubble management are likely to be a few mm.


2016 ◽  
Vol 24 (2) ◽  
pp. 31-40
Author(s):  
Miroslava Jarabicová ◽  
Peter Minarič

Abstract The main objective of this paper is to evaluate the impact of climate change on the soil-water regime of the Záhorská lowlands. The consequences of climate change on soil-water storage were analyzed for two crops: spring barley and maize. We analyzed the consequences of climate change on soil-water storage for two crops: spring barley and maize. The soil-water storage was simulated with the GLOBAL mathematical model. The data entered into the model as upper boundary conditions were established by the SRES A2 and SRES B1 climate scenarios and the KNMI regional climate model for the years from 2071 to 2100 (in the text called the time horizon 2085 which is in the middle this period). For the reference period the data from the years 1961-1990 was used. The results of this paper predict soil-water storage until the end of this century for the crops evaluated, as well as a comparison of the soil-water storage predictions with the course of the soil-water storage during the reference period.


2014 ◽  
Vol 7 (1) ◽  
pp. 73-129
Author(s):  
M. Guimberteau ◽  
P. Ciais ◽  
A. Ducharne ◽  
J. P. Boisier ◽  
S. Peng ◽  
...  

Abstract. This study analyzes the impact of the two soil model parameterizations of the Land Surface Model ORCHIDEE on their estimates of Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29 yr period 1980–2008. The two soil models are a simple 2 layer soil scheme with a bucket topped by an evaporative layer vs. an 11 layer soil diffusion scheme. The soil models were coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components were compared with several datasets at sub-basin scale. The use of the 11 layer soil diffusion scheme did not significantly change the Amazonian water budget simulation when compared to the 2 layer soil scheme (+3.1 and −3.0% in evapotranspiration and river discharge, respectively). However, the higher water holding capacity of the soil and the physically based representation of runoff and drainage in the 11 layer soil diffusion, resulted in higher dynamics of soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11 layer soil diffusion scheme resulted in increased dry-season evapotranspiration (+0.5 mm d−1, +17%) and river discharge in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin was sustained during the whole dry season with the 11 layer soil diffusion model, whereas the 2 layer soil scheme limited it at the end of the dry season. Lower plant water stress simulated by the 11 layer soil diffusion scheme, led to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based upon eddy-covariance and satellite greenness measurements. Simulated LAI was consequently higher with the 11LAY (up to +0.4) but exhibited too low a variation when compared to a satellite-based dataset. The dry-season length between 4 and 7 months over the entire Amazon basin was found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil models. Overall, the 11 layer soil diffusion scheme provided little improvement in simulated hydrology on average over the wet tropical Amazonian sub-basins but a more significant improvement over the drier sub-basins. However, the use of the 11 layer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon basin where longer dry season and more severe droughts are expected in the next century.


2013 ◽  
Vol 21 (1) ◽  
pp. 1-8
Author(s):  
Mária Pásztorová

Abstract Climate change is one of the largest threats to the modern world. It is primarily experienced via changes and extreme weather events, including air temperature changes, the uneven distribution of precipitation and an increase in the alteration of torrential short-term precipitation and longer non-precipitation periods. However climate change is not only a change in the weather; it also has a much larger impact on an ecosystem. As a result of expected climate change, a lack of either surface water or groundwater could occur within wetlands; thus, the existence of wetlands and their flora and fauna could be threatened. This submitted work analyses the impact of climate change on the wetland ecosystems of Poiplie, which is situated in the south of Slovakia in the Ipeľ river basin. The area is an important wetland biotope with rare plant and animal species, which mainly live in open water areas, marshes, wet meadows and alluvial forests. To evaluate any climate change, the CGCM 3.1 model, two emission scenarios, the A2 emission scenario (pessimistic) and the B1 emission scenario (optimistic), were used within the regionalization. For simulating the soil water storage, which is one of the components of a soil water regime, the GLOBAL mathematical model was used.


2004 ◽  
Vol 44 (6) ◽  
pp. 559 ◽  
Author(s):  
P. R. Bird ◽  
T. T. Jackson ◽  
G. A. Kearney ◽  
G. R. Saul ◽  
R. A. Waller ◽  
...  

Soil salinity of non-irrigated farmlands in Australia has been largely attributed to tree clearing and their replacement by annual pasture and crop species. This paper deals with the effects of sowing perennial ryegrass and greater inputs of fertiliser, and the effect of grazing management, on water use and the potential to improve recharge control on a gravelly soil derived from basalt.In 1991, neutron access tubes were inserted into plots on a project established in 1989 to examine the impact of upgrading the pasture on sheep productivity. These plots were subdivided in 1996 to examine the impact of grazing management (tactical v. set-stocking) and pasture type (pastures dominated by annual species v. upgraded pastures) on productivity. Neutron probe readings were taken periodically from tubes in each plot, at depth intervals of 25 cm (December 1991–March 1995) or 20 cm (August 1995–April 1999) to 170 cm. There was no effect of treatment on soil moisture. Data for 2 wet years (1995 and 1996) indicate that the effective soil-water storage capacity to 170 cm depth for these pastures was a mean of 125 mm of water. This represents the potential buffer before winter rainfall exceeds the water use by the pasture, fills the soil profile to capacity and then either runs off or allows deep drainage to occur.We did not achieve a significant reduction in soil-water storage, and therefore potential recharge of groundwater, by re-sowing the pasture with perennial ryegrass and applying more fertiliser, or by altering the grazing management to a form of rotational grazing. Compared with set-stocked annual pasture, the impact of such treatments was to reduce soil-water storage to a depth of 170 cm in autumn by less than 20 mm/year. There was no association between total herbage production and soil-water storage, however an increased percentage of perennial ryegrass in the pasture was associated with a small reduction in soil-water storage in 1 year. Greater use of soil-water may depend upon using deeper-rooted perennials or maintaining a higher proportion of perennial species in the sward (the perennial ryegrass in the re-sown pastures declined from 53% in October 1996 to 4% in October 1998).


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Sign in / Sign up

Export Citation Format

Share Document