scholarly journals Ride Blending Control for Electric Vehicles

2019 ◽  
Vol 10 (2) ◽  
pp. 36 ◽  
Author(s):  
Vincenzo Ricciardi ◽  
Valentin Ivanov ◽  
Miguel Dhaens ◽  
Bert Vandersmissen ◽  
Marc Geraerts ◽  
...  

Vehicles equipped with in-wheel motors (IWMs) feature advanced control functions that allow for enhanced vehicle dynamics and stability. However, these improvements occur to the detriment of ride comfort due to the increased unsprung mass. This study investigates the driving comfort enhancement in electric vehicles that can be achieved through blended control of IWMs and active suspensions (ASs). The term “ride blending”, coined in a previous authors’ work and herein retained, is proposed by analogy with the brake blending to identify the blended action of IWMs and ASs. In the present work, the superior performance of the ride blending control is demonstrated against several driving manoeuvres typically used for the evaluation of the ride quality. The effectiveness of the proposed ride blending control is confirmed by the improved key performance indexes associated with driving comfort and active safety. The simulation results refer to the comparison of the conventional sport utility vehicle (SUV) equipped with a passive suspension system and its electric version provided with ride blending control. The simulation analysis is conducted with an experimentally validated vehicle model in CarMaker® and MATLAB/Simulink co-simulation environment including high-fidelity vehicle subsystems models.

Author(s):  
Mohamed AA Abdelkareem ◽  
Mina MS Kaldas ◽  
Mohamed Kamal Ahmed Ali ◽  
Lin Xu

As the articulated trucks are mainly used for long distance transportations, the design of the suspension system became a major concern and a research hotspot not only for ride comfort and driving safety but also for energy consumption. Therefore, the objective of this study is to conduct a comprehensive parametrical–based conflict analysis between the ride comfort and road holding together with the potential power of the shock absorbers. The simulation analysis is performed using a 23 degree-of-freedom full truck semi-trailer mathematical model with random road surface model. The bounce and combined excitation modes for the truck model are applied to present the pro and contra of the simplified and realistic analysis. The bounce mode is applied for a road Class C and truck driving speed of 20 m/s, while the combined mode is performed with the same truck-speed but considering a Class C road for the left track and Class D road for the right track considering the time delay between the truck axles. The truck dynamics including the mean potential power, average dynamic tire load and bounce, and pitch and roll accelerations is comprehensively combined in the conflict analysis–based suspension and driving parameters. The obtained simulation results showed that the articulated truck suspension should be designed considering a realistic excitation condition. In contrast to the bounce mode, under the combined road input, the tractor ride quality and road handling performances are improved when a heavily damped suspension is considered. Furthermore, the otherwise dissipated energy through the damping events can reach an overall value between 2 and 4 kW.


Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


2018 ◽  
Vol 232 ◽  
pp. 02058
Author(s):  
Wenwen Xiao ◽  
Huanhuan Zhang

This paper analyzes the ride comfort of distributed electric vehicle, simplifies a distributed electric vehicle to a fifteen degree of freedom model, and deduces the vibration differential equation by Newton 's second theorem. In this paper, a new type of hub motor vibration reduction system is established, which effectively solves the problem of large unsprung mass of distributed drive vehicles and provides a new method to improve the ride comfort of distributed drive electric vehicles. The genetic algorithm mainly regards the stiffness and damping of the suspension, hub motor damping system and tire as the design variables. The sum of root mean square value of suspension disturbance degree, body acceleration and wheel dynamic load is taken as the optimization objective function, and the limit stroke of wheel up and down and wheel dynamic load limit are taken as constraints. In order to verify the simulation optimization effect, this paper further simulates the natural frequency, damping ratio, stiffness ratio, mass ratio, speed and road surface grade of distributed drive electric vehicle. The results show that the optimization of the stiffness and damping of distributed-drive electric vehicles effectively improves ride comfort and passenger comfort. The 15 DOF model of distributed electric vehicle provides a theoretical basis for analyzing the ride comfort of distributed electric vehicle.


2021 ◽  
pp. 1-13
Author(s):  
Paul Augustine Ejegwa ◽  
Shiping Wen ◽  
Yuming Feng ◽  
Wei Zhang ◽  
Jia Chen

Pythagorean fuzzy set is a reliable technique for soft computing because of its ability to curb indeterminate data when compare to intuitionistic fuzzy set. Among the several measuring tools in Pythagorean fuzzy environment, correlation coefficient is very vital since it has the capacity to measure interdependency and interrelationship between any two arbitrary Pythagorean fuzzy sets (PFSs). In Pythagorean fuzzy correlation coefficient, some techniques of calculating correlation coefficient of PFSs (CCPFSs) via statistical perspective have been proposed, however, with some limitations namely; (i) failure to incorporate all parameters of PFSs which lead to information loss, (ii) imprecise results, and (iii) less performance indexes. Sequel, this paper introduces some new statistical techniques of computing CCPFSs by using Pythagorean fuzzy variance and covariance which resolve the limitations with better performance indexes. The new techniques incorporate the three parameters of PFSs and defined within the range [-1, 1] to show the power of correlation between the PFSs and to indicate whether the PFSs under consideration are negatively or positively related. The validity of the new statistical techniques of computing CCPFSs is tested by considering some numerical examples, wherein the new techniques show superior performance indexes in contrast to the similar existing ones. To demonstrate the applicability of the new statistical techniques of computing CCPFSs, some multi-criteria decision-making problems (MCDM) involving medical diagnosis and pattern recognition problems are determined via the new techniques.


1998 ◽  
Vol 122 (2) ◽  
pp. 284-289 ◽  
Author(s):  
H. Nakai ◽  
S. Oosaku ◽  
Y. Motozono

This paper presents the development of gain-scheduled observers for semi-active suspensions. The states of the semi-active suspensions must be accurately obtained because the accuracy directly affects system performances such as ride comfort. Nonlinearity in the absorber of the semi-active suspensions is a difficult problem for estimating the accurate states using conventional linear observer theories. To solve this problem, we have designed a new gain-scheduled observer by introducing two improvements. The validity of this nonlinear observer was confirmed by simulations and experiments. The results indicate that the present observer can accurately estimate the suspension stroke velocity using the vertical acceleration sensor on the sprung mass. [S0022-0434(00)02302-9]


2015 ◽  
Vol 68 (1/2/3) ◽  
pp. 22 ◽  
Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang ◽  
Nan Chen

2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Author(s):  
Jialing Yao ◽  
Meng Wang ◽  
Yanan Bai

Automobile roll control aims to reduce or achieve a zero roll angle. However, the ability of this roll control to improve the handling stability of vehicles when turning is limited. This study proposes a direct tilt control methodology for automobiles based on active suspension. This tilt control leans the vehicle’s body toward the turning direction and therefore allows the roll moment generated by gravity to reduce or even offset the roll moment generated by the centrifugal force. This phenomenon will greatly improve the roll stability of the vehicle, as well as the ride comfort. A six-degrees-of-freedom vehicle dynamics model is established, and the desired tilt angle is determined through dynamic analysis. In addition, an H∞ robust controller that coordinates different performance demands to achieve the control objectives is designed. The occupant’s perceived lateral acceleration and the lateral load transfer ratio are used to evaluate and explain the main advantages of the proposed active tilt control. To account the difference between the proposed and traditional roll controls, a simulation analysis is performed to compare the proposed tilt H∞ robust control, a traditional H∞ robust control for zero roll angle, and a passive suspension system. The analysis of the time and frequency domains shows that the proposed controller greatly improves the handling stability and anti-rollover ability of vehicles during steering and maintains acceptable ride comfort.


Sign in / Sign up

Export Citation Format

Share Document