roll moment
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 19)

H-INDEX

9
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7850
Author(s):  
Jonatan Pajares Redondo ◽  
Beatriz L. Boada ◽  
Vicente Díaz

Many of the current research works are focused on the development of different control systems for commercial vehicles in order to reduce the incidence of risky driving situations, while also improving stability and comfort. Some works are focused on developing low-cost embedded systems with enough accuracy, reliability, and processing time. Previous research works have analyzed the integration of low-cost sensors in vehicles. These works demonstrated the feasibility of using these systems, although they indicate that this type of low-cost kit could present relevant delays and noise that must be compensated to improve the performance of the device. For this purpose, it is necessary design controllers for systems with input and output delays. The novelty of this work is the development of an LMI-Based H∞ output-feedback controller that takes into account the effect of delays in the network, both on the sensor side and the actuator side, on RSC (Roll Stability Control) systems. The controller is based on an active suspension with input and output delays, where the anti-roll moment is used as a control input and the roll rate as measured data, both with delays. This controller was compared with a controller system with a no-delay consideration that was experiencing similar delays. The comparison was made through simulation tests with a validated vehicle on the TruckSim® software.


2021 ◽  
Author(s):  
Mengying Wang ◽  
Zhenxu Sun ◽  
Shengjun Ju ◽  
Guowei Yang

Abstract Conventional studies usually assume that the train surface is smooth, so as to simplify the numerical calculation. In fact, the surface of the train is irregular, which will change the flow characteristics in the boundary layer and further affect the aerodynamic performance of a train. In this work, roughness is applied to the roof of a 1:25 scaled train model in the form of longitudinal strips. Firstly, the improved delayed detached eddy simulation (IDDES) method is adopted to simulate the aerodynamic performance of the train model with both smooth and rough surface, which are subjected to crosswind. Results show that the side force coefficient and the roll moment coefficient subjected to rough model decreased by 3.71% and 10.56% compared with the smooth model. Then, the width, height and length of the strips are selected as variables to design different numerical simulation schemes based on the orthogonal experimental design method. Through variance analysis, it can be found that four design parameters have no significant effect on the side force coefficient. Meanwhile, for the roll moment coefficient, the length of the strips in the straight region of the train has a significant effect and the width of the strips has a highly significant effect on it. These conclusions can provide a theoretical basis to improve the aerodynamic performance of the high-speed train subjected to crosswind.


2021 ◽  
Vol 38 (8) ◽  
pp. 575-580
Author(s):  
Ki-yeon Jeong ◽  
Sun-young Lee ◽  
Hyun-seob Lee ◽  
Hee-sung Yang ◽  
Min-ho Kim ◽  
...  

Author(s):  
Kesavan Panjavarnam ◽  
Mark Ovinis ◽  
Saravanan Karupanan

In this paper, a new roll and pitch control mechanism for an underwater glider is described. The mechanism controls the glider’s pitch and roll without the use of a conventional buoyancy engine or movable mass. The mechanism uses water as trim mass, with a high flow rate water pump to shift water from water bladders located at the front, rear, left, and right of the glider. By shifting water from the left water bladder to the right water bladder, a roll moment is induced. Similarly, pitch is achieved by controlling the water flow between the front and rear water bladder using a water pump. The water bladders act not only as a means for roll and pitch control but as a buoyancy engine as well. While this mechanism reduces the need for a dedicated buoyancy engine, as well as internal moving masses, motion control is more complicated, as buoyancy, roll, and pitch must be considered simultaneously. The dynamics of the system were derived and simulated, as well as validated experimentally. The glider is able to move in a sawtooth pattern with a pitch angle of 43.5?, as well as a maximum roll angle of 43.6?. Additionally, the effect of pump rate on pitch and roll rate was investigated. Both pitch and roll rates increase with increasing pump rate.


2020 ◽  
pp. 002029402097757
Author(s):  
Jinwei Sun ◽  
Jingyu Cong ◽  
Weihua Zhao ◽  
Yonghui Zhang

An integrated fault tolerant controller is proposed for vehicle chassis system. Based on the coupled characteristics of vertical and lateral system, the fault tolerant controller mainly concentrates on the cooperative control of controllable suspension and lateral system with external disturbances and actuator faults. A nine-DOF coupled model is developed for fault reconstruction and accurate control. Firstly, a fault reconstruction mechanism based on sliding mode is introduced; when the sliding mode achieves, actuator fault signals can be observed exactly through selecting appropriate gain matrix and equivalent output injection term. Secondly, an active suspension controller, a roll moment controller and a stability controller is developed respectively; the integrated control strategy is applied to the system under different driving conditions: when the car is traveling straightly, the main purpose of the integrated strategy is to improve the vertical performance; the lateral controller including roll moment control and stability control will be triggered when there is a steering angle input. Simulations experiments verify the performance enhancement and stability of the proposed controller under three different driving conditions.


Author(s):  
Jialing Yao ◽  
Meng Wang ◽  
Yanan Bai

Automobile roll control aims to reduce or achieve a zero roll angle. However, the ability of this roll control to improve the handling stability of vehicles when turning is limited. This study proposes a direct tilt control methodology for automobiles based on active suspension. This tilt control leans the vehicle’s body toward the turning direction and therefore allows the roll moment generated by gravity to reduce or even offset the roll moment generated by the centrifugal force. This phenomenon will greatly improve the roll stability of the vehicle, as well as the ride comfort. A six-degrees-of-freedom vehicle dynamics model is established, and the desired tilt angle is determined through dynamic analysis. In addition, an H∞ robust controller that coordinates different performance demands to achieve the control objectives is designed. The occupant’s perceived lateral acceleration and the lateral load transfer ratio are used to evaluate and explain the main advantages of the proposed active tilt control. To account the difference between the proposed and traditional roll controls, a simulation analysis is performed to compare the proposed tilt H∞ robust control, a traditional H∞ robust control for zero roll angle, and a passive suspension system. The analysis of the time and frequency domains shows that the proposed controller greatly improves the handling stability and anti-rollover ability of vehicles during steering and maintains acceptable ride comfort.


2020 ◽  
pp. 1-28
Author(s):  
M. Ricco ◽  
A. Percolla ◽  
G. Cardolini Rizzo ◽  
M. Zanchetta ◽  
D. Tavernini ◽  
...  

2020 ◽  
Vol 69 (2) ◽  
pp. 1388-1403 ◽  
Author(s):  
Marco Ricco ◽  
Mattia Zanchetta ◽  
Giovanni Cardolini Rizzo ◽  
Davide Tavernini ◽  
Aldo Sorniotti ◽  
...  

2020 ◽  
Vol 26 (1) ◽  
pp. 15-29
Author(s):  
Nang Van Nguyen ◽  
Yasuhiro Harada ◽  
Hiroki Takimoto ◽  
Kota Shimomoto

Highlights Keywords: Implement, Inertial parameter, Lateral stability, Moment of inertia, Rollover, Tractor.Static lateral stability of agricultural tractors with mounted rotary tillers was analyzed. Keywords: Implement, Inertial parameter, Lateral stability, Moment of inertia, Rollover, Tractor.The mounted implement increased static lateral stability of tractors in phase I rollover but decreased static lateral stability in phase II rollover. Keywords: Implement, Inertial parameter, Lateral stability, Moment of inertia, Rollover, Tractor.A mounted implement may significantly reduce the static lateral stability of agricultural tractors and increase the risk of tractor side overturn. Keywords: Implement, Inertial parameter, Lateral stability, Moment of inertia, Rollover, Tractor. ABSTRACT. Each year, many fatalities result from rollovers of agricultural tractors in Japan. In addition to rollover protective structures (ROPS) and seat belts, a warning device that alerts the operator of impending rollover based on the tractor stability index is a measure used to prevent rollovers. The stability index requires inertial parameters, which have been measured only for the single body of the tractor, to calculate the warning threshold. In this study, the center of gravity (CoG) and lateral stability angles of three agricultural tractors were measured, and lateral stability angles were also calculated and compared with measured values for three tractor-tiller combinations to analyze the effect of the attached implement on the tractor stability as well as to verify the accuracy of the calculation methods. The roll moment of inertia (RMI) was also measured for two tractors and two rotary tillers, and RMI values for tractor-tiller combinations were calculated. The measurement and calculation results show that the attached implement increased the lateral stability angle of tractors in phase I rollover and decreased the lateral stability angle in phase II rollover, and for a certain tractor-tiller combination, there was no transition from phase I to phase II rollover. The difference between the measured and calculated lateral stability angles in phase I ranged from -3.5° to 2.5°, while that in phase II ranged from 0.2° to 5.2°. The RMI about the longitudinal axis through the CoG was 203 and 433 kg m-2 for tractors A and B, respectively, and 52 and 94 kg m-2 for rotary tillers D and F, respectively. The calculated RMI values were 265 and 540 kg m-2 for tractor-tiller combinations A-D and B-E, respectively. Keywords: Implement, Inertial parameter, Lateral stability, Moment of inertia, Rollover, Tractor.


Sign in / Sign up

Export Citation Format

Share Document