scholarly journals Dynamical Model And Ride Comfort Simulation Analysis Of Distributed Drive Electric Vehicle

2018 ◽  
Vol 232 ◽  
pp. 02058
Author(s):  
Wenwen Xiao ◽  
Huanhuan Zhang

This paper analyzes the ride comfort of distributed electric vehicle, simplifies a distributed electric vehicle to a fifteen degree of freedom model, and deduces the vibration differential equation by Newton 's second theorem. In this paper, a new type of hub motor vibration reduction system is established, which effectively solves the problem of large unsprung mass of distributed drive vehicles and provides a new method to improve the ride comfort of distributed drive electric vehicles. The genetic algorithm mainly regards the stiffness and damping of the suspension, hub motor damping system and tire as the design variables. The sum of root mean square value of suspension disturbance degree, body acceleration and wheel dynamic load is taken as the optimization objective function, and the limit stroke of wheel up and down and wheel dynamic load limit are taken as constraints. In order to verify the simulation optimization effect, this paper further simulates the natural frequency, damping ratio, stiffness ratio, mass ratio, speed and road surface grade of distributed drive electric vehicle. The results show that the optimization of the stiffness and damping of distributed-drive electric vehicles effectively improves ride comfort and passenger comfort. The 15 DOF model of distributed electric vehicle provides a theoretical basis for analyzing the ride comfort of distributed electric vehicle.

2019 ◽  
Vol 10 (2) ◽  
pp. 36 ◽  
Author(s):  
Vincenzo Ricciardi ◽  
Valentin Ivanov ◽  
Miguel Dhaens ◽  
Bert Vandersmissen ◽  
Marc Geraerts ◽  
...  

Vehicles equipped with in-wheel motors (IWMs) feature advanced control functions that allow for enhanced vehicle dynamics and stability. However, these improvements occur to the detriment of ride comfort due to the increased unsprung mass. This study investigates the driving comfort enhancement in electric vehicles that can be achieved through blended control of IWMs and active suspensions (ASs). The term “ride blending”, coined in a previous authors’ work and herein retained, is proposed by analogy with the brake blending to identify the blended action of IWMs and ASs. In the present work, the superior performance of the ride blending control is demonstrated against several driving manoeuvres typically used for the evaluation of the ride quality. The effectiveness of the proposed ride blending control is confirmed by the improved key performance indexes associated with driving comfort and active safety. The simulation results refer to the comparison of the conventional sport utility vehicle (SUV) equipped with a passive suspension system and its electric version provided with ride blending control. The simulation analysis is conducted with an experimentally validated vehicle model in CarMaker® and MATLAB/Simulink co-simulation environment including high-fidelity vehicle subsystems models.


2012 ◽  
Vol 224 ◽  
pp. 243-247
Author(s):  
Cai Bin Li ◽  
Fu Yun Liu ◽  
Ju Cai Deng

Applying ADAMS to vibration control field of heavy truck. The vibration simulation model of a truck is established. With the simulation model, different acceleration responses under different suspension stiffness and damping force are simulated. The simulation result is close to the actual result. It shows that the simulation method is benefit to reduce the number of vibration experiment and to forecast the vibration response of heavy truck.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012091
Author(s):  
Jiwei Geng ◽  
Qun Chi

Abstract The consumption of gasoline and diesel for cars is beyond imagination. Along with these problems comes environmental destruction. In order to achieve the two major indicators of power performance and economy, the most critical component of electric vehicles --- the power system is optimized and improved, and simulation is used to verify it on this basis‥ It can be concluded that the maximum vehicle speed is greater than 120km/h, the maximum gradeability exceeds 30%, the cruising range reaches 178km.


2021 ◽  
Vol 257 ◽  
pp. 01017
Author(s):  
Lin Xu ◽  
Bing Wang ◽  
Mingxi Cheng ◽  
Shangshang Fang

Due to the rapid promotion of electric vehicles, large-scale charging behavior of electric vehicles brings a large number of time and space highly random charging load, which will have a great impact on the safe operation of distribution network. This paper proposes a planning method of electric vehicle charging station based on travel data. Firstly, the didi trip data is processed and mined to get the trip matrix and other information. Then, the electric vehicle charging load forecasting model is established based on the established unit mileage power consumption model and charging model, and the charging demand distribution information is predicted by Monte Carlo method. Finally, the simulation analysis is carried out based on the trip data of some areas of a city, which shows the effectiveness of the established model feasibility.


Author(s):  
Kesavan Ramakrishnan ◽  
Liunan Yang ◽  
Federico Maria Ballo ◽  
Massimiliano Gobbi ◽  
Giampiero Mastinu

The influence of inerter on the performance of passive suspension systems is studied by comparing six different suspension architectures using a simplified quarter-car model. The suspension architectures can have one or two springs, damper, and inerter. Ride comfort, road holding, and working space are considered as the objective functions, while the suspension spring stiffness, damping ratio, and inerter equivalent mass are taken as the design variables for the multi-objective optimization. The Pareto-optimal solutions are computed and compared in the objective functions domain. The results confirm that specific inerter architectures provide advantages when all the design variables are varied. The inerter benefits are more evident in all the considered architectures, when the suspension spring stiffness is kept constant.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3736
Author(s):  
Jae-Oh Han ◽  
Won-Hyeong Jeong ◽  
Jong-Seok Lee ◽  
Se-Hoon Oh

As environmental regulations have been strengthened worldwide since the Paris Climate Agreement, the automobile industry is shifting its production paradigm to focus on eco-friendly vehicles such as electric vehicles and hydrogen-battery vehicles. Governments are banning fossil fuel vehicles by law and expanding the introduction of green vehicles. The energy efficiency of electric vehicles that use a limited power source called batteries depends on the driving environment. Applying a two-speed transmission to an electric vehicle can optimize average speed and performance efficiency at low speeds, and achieve maximum speed with minimal torque at high speeds. In this study, a two-speed transmission for an electric vehicle has been developed, to be used in a compact electric vehicle. This utilizes a planetary gear of a total of three pairs, made of a single module which was intended to enable two-speed. The ring gear was removed, and the carrier was used in common. When shifting, the energy used for the speed change is small, due to the use of the simple method of fixing the sun gear of each stage. Each gear was designed by calculating bending strength and surface durability, using JGMA standards, to secure stability. The safety factor of the gears used in the transmission is as follows: all gears have been verified for safety with a bending strength of 1.2 or higher and a surface pressure strength of 1.1 or higher. The design validity of the transmission was verified by calculating the gear meshing ratio and the reference efficiency of the gear. The transmission to be developed through the research results of this paper has a simple and compact structure optimized for electric vehicles, and has reduced shift shock. In addition, energy can be used more efficiently, which will help improve fuel economy and increase drive range.


Sign in / Sign up

Export Citation Format

Share Document