scholarly journals Constructing Supports–Network with N–TiO2 Nanofibres for Highly Efficient Hydrogen–Production of PEM Electrolyzer

2021 ◽  
Vol 12 (3) ◽  
pp. 124
Author(s):  
Sen Wang ◽  
Hong Lv ◽  
Yongwen Sun ◽  
Wenxuan Ji ◽  
Xiaojun Shen ◽  
...  

Hydrogen production with a proton exchange membrane (PEM)electrolyzer utilized with renewable energy power is considered to be an efficient and clean green technique, but the poor oxygen evolution performance results in high energy consumption and low efficiency. In this work, a strategy is reported for the construction of a support network of the anodic catalyst layer to simultaneously ameliorate its sluggish reaction kinetics and mass transport in order to realize highly efficient hydrogen production of the PEM electrolyzer. After in situ synthesis of IrO2 nanoparticles on N–doped TiO2 nanofibers, the as–prepared IrO2/N–TiO2 electrode shows substantially enhanced Ir utilization and accelerated mass transport, consequently decreasing the corresponding cell potential of 107 mV relative to pure IrO2 at 2 A cm−2. The enhanced activity of IrO2/N–TiO2 could be due to the fact that the N–TiO2 nanofiber support can form a porous network, endowing IrO2/N–TiO2 with a large reactive contact interface and favorable mass transfer characters. The strategy in this work supplies a pathway to develop high–efficiency interfacial reaction materials for diverse applications.

Author(s):  
Alicia Keow ◽  
Zheng Chen

Abstract Proton exchange membrane (PEM) electrolyzers with the ability to produce gases at a pressure suitable for direct metal hydride storage are desirable because they do not require the use of compressors and other auxiliary components. Direct storage into metal hydride cylinders is made feasible when the pressure and flow rate of hydrogen is controlled. The nonlinear dynamics of the PEM electrolyzer change with temperature and pressure, both of which change with the hydrogen production rate, and are thus difficult to estimate. Therefore, a model-free, relay-feedback, auto-tuning approach is used to tune a proportional integral (PI) controller. This allows for the determination of the voltage supply to the electrolyzer by tracking the current set-point and correlating it to the hydrogen production rate. A gain scheduling approach is used to record the tuned controller’s parameters at different set-points, minimizing the frequency of tuning the device. A self-assessment test is used to determine situations where the auto-tuner should activate to update the PI parameters, thus, allowing for the system to operate without supervision. The auto-tuning PI control is successfully tested with a PEM electrolyzer setup. Experimental results showed that an auto-tuner can tune the controller parameters and produce favorable transient behaviors, allowing for a degree of adaptability for variations in system set-points.


Author(s):  
Mark R. Campbell ◽  
Sachin S. Deshmukh ◽  
Robert F. Boehm ◽  
Rick Hurt

A model is presented to simulate the energy production from a solar photovoltaic (PV) array in Southern Nevada and its energy produced for hydrogen production at a hydrogen filling station. A solar PV array composed of four single axis tracking units provides power to a Proton Exchange Membrane (PEM) electrolyzer, which produces hydrogen that is stored on site for use in hydrogen converted vehicles. The model provides the ability to predict possible hydrogen production at the site, as well as the amount of hydrogen required to sustain a prescribed level of vehicle usage. Together, these results made it possible to determine the energy required to produce sufficient hydrogen to sustain the vehicles, and the percentage of that energy generated by the solar PV array. For an average year in Las Vegas and a travel requirement of 57 miles/day, this percentage was found to be 33 percent. This simulation has the potential to be modified for different locations, array size, amount of storage, or usage requirement.


2020 ◽  
Vol 197 ◽  
pp. 05001
Author(s):  
Alessandra Perna ◽  
Mariagiovanna Minutillo ◽  
Simona Di Micco ◽  
Viviana Cigolotti ◽  
Adele Pianese

Ammonia is a particularly promising hydrogen carrier due to its relatively low cost, high energy density, its liquid storage and to its production from renewable sources. Thus, in recent years, great attention is devoted to this fuel for realizing next generation refueling stations according to a carbon-free energy economy. In this paper a distributed onsite refueling station (200 kg/day of hydrogen filling 700-bar HFCEVs (Hybrid Fuel Cell Electric Vehicles) with about 5 kg of hydrogen in 5 min), based on ammonia feeding, is studied from the energy and economic point of views. The station is designed with a modular configuration consisting of more sections: i) the hydrogen production section, ii) the electric energy supplier section, iii) the compression and storage section and the refrigeration/dispenser section. The core of the station is the hydrogen production section that is based on an ammonia cracking reactor and its auxiliaries; the electric energy demand necessary for the station operation (i.e. the hydrogen compression and refrigeration) is satisfied by a PEMFC (Proton-Exchange Membrane Fuel Cell) power module. Energy performance, according to the hydrogen daily demand, has been evaluated and the estimation of the levelized cost of hydrogen (LCOH) has been carried out in order to establish the cost of the hydrogen at the pump that can assure the feasibility of this novel refueling station.


2011 ◽  
Vol 36 (17) ◽  
pp. 11480-11487 ◽  
Author(s):  
Ömer Faruk Selamet ◽  
Fatih Becerikli ◽  
Mahmut D. Mat ◽  
Yüksel Kaplan

2021 ◽  
Author(s):  
Amit Gautam ◽  
Saddam Sk ◽  
Amritanjali Tiwari ◽  
Moses Abraham Bokinala ◽  
P. Vijayanand ◽  
...  

A highly efficient hybrid ZnCdS-rGO/MoS2 heterostructure is successfully synthesized through a hot injection approach and control loading of rGO/MoS2. The synergism provides an unprecedently high H2-generation rate 193.4 mmol H2...


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3932
Author(s):  
Jie Song ◽  
Qing Ye ◽  
Kun Wang ◽  
Zhiyuan Guo ◽  
Meiling Dou

The development of high efficient stacks is critical for the wide spread application of proton exchange membrane fuel cells (PEMFCs) in transportation and stationary power plant. Currently, the favorable operation conditions of PEMFCs are with single cell voltage between 0.65 and 0.7 V, corresponding to energy efficiency lower than 57%. For the long term, PEMFCs need to be operated at higher voltage to increase the energy efficiency and thus promote the fuel economy for transportation and stationary applications. Herein, PEMFC single cell was investigated to demonstrate its capability to working with voltage and energy efficiency higher than 0.8 V and 65%, respectively. It was demonstrated that the PEMFC encountered a significant performance degradation after the 64 h operation. The cell voltage declined by more than 13% at the current density of 1000 mA cm−2, due to the electrode de-activation. The high operation potential of the cathode leads to the corrosion of carbon support and then causes the detachment of Pt nanoparticles, resulting in significant Pt agglomeration. The catalytic surface area of cathode Pt is thus reduced for oxygen reduction and the cell performance decreased. Therefore, electrochemically stable Pt catalyst is highly desirable for efficient PEMFCs operated under cell voltage higher than 0.8 V.


2021 ◽  
Vol 237 ◽  
pp. 114095
Author(s):  
Felipe Mojica ◽  
Md Azimur Rahman ◽  
Mrittunjoy Sarker ◽  
Daniel S. Hussey ◽  
David L. Jacobson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document