scholarly journals Spatial-Economic Potential Analysis of Wind Power Plants in Germany

Wind ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 77-89
Author(s):  
David Hennecke ◽  
Carsten Croonenbroeck

Before a new wind farm can be built, politics and regional planning must approve of the respective area as a suitable site. For this purpose, large-scale potential computations were carried out to identify suitable areas. The calculation of wind power plant potential usually focuses on capturing the highest energy potential. In Germany, due to an energy production reimbursement factor defined in the Renewable Energy Sources Act (“Erneuerbare-Energien-Gesetz”, EEG) in 2017, the influence of energy quantities on the power plant potential varies, economically and spatially. Therefore, in addition to the calculation of energy potentials, it was also necessary to perform a potential analysis in terms of economic efficiency. This allows, on the one hand, an economic review of the areas tendered by the regional planning and, on the other hand, a spatial-economic analysis that expands the parameters in the search for new areas. In this work, (a) potentials with regard to the levelized cost of electricity (LCOE) were calculated by the example of the electricity market in Germany, which were then (b) spatially and statistically processed on the level of the federal states.

Author(s):  
Moritz Hübel ◽  
Jens Hinrich Prause ◽  
Conrad Gierow ◽  
Egon Hassel ◽  
Raphael Wittenburg ◽  
...  

The increasing share of fluctuating renewable energy sources leads to changing requirements for conventional power plants. The changing characteristics of the residual load requires the conventional fleet to operate with higher load gradients, lower minimum load at improved efficiency levels as well as faster start-ups and provision of ancillary services. Despite the requirements from the electricity market, the value of improving those flexibility parameters is hard to evaluate for power plant operators. In order to quantify the additional benefit that can be achieved by improving flexibility parameters on a certain power plant in a changing market environment, an adjustable load dispatch model has developed for that purpose. Using past electricity market data, the model is validated for typical coal and a typical gas fired power plants by reproducing their operational schedule. In the next step, the model is used to apply parameter changes to the power plants specifications and economic effects are demonstrated. General statements are derived on which flexibility parameter needs to be improved on each power plant type. Furthermore, specific economic evaluations are shown for the reference power plants in order to present the ability of the developed tool to support investment decisions for modernization projects of existing power plants.


2021 ◽  
Vol 5 (47) ◽  
pp. 4-4
Author(s):  
Alexander Saakian ◽  
◽  

In the conditions of regions with relatively low solar and wind potentials, interruptions in power supply to consumers powered by micro-power plants based on renewable energy sources may be due to a decrease in the power of wind power plants, photovoltaic modules with insufficient wind speed and insolation, respectively, to provide power to consumers. A study of the reliability of a system including a wind power plant, photovoltaic modules, a hybrid charge controller, an energy storage device and an inverter was carried out using a logical-probabilistic method. As part of the study, an analysis was made of the structure of the power supply system and its modes of operation in the event of various events: failure of system elements, replacement of failed elements, diagnostics of elements, decrease in the power of the wind power plant and photovoltaic modules. Combinations of events leading to a power failure of consumers connected to a hybrid micro-power plant have been determined. A fault tree was built for the hybrid micro-power plant. Expressions are obtained for calculating the probability of short-term, long-term power supply interruptions, the probability of power supply interruptions occurring when off-design insolation and wind speed occur. Mathematical modeling of the reliability of the hybrid micro-power plant for the conditions of the central part of the Republic of Mari El has been carried out. It has been determined that the probability of a system failure is determined mainly by the probability of long power outages. In this case, the reliability indicators of the system as a whole are largely determined by the values of the reliability indicators of the hybrid controller and inverter. Keywords: YBRID MICRO-POWER PLANT, RENEWABLE ENERGY SOURCES, RELIABILITY, RURAL POWER SUPPLY


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 655
Author(s):  
Louay Elmorsy ◽  
Tatiana Morosuk ◽  
George Tsatsaronis

The transition towards higher shares of electricity generation from renewable energy sources is shown to be significantly slower in developing countries with low-cost fossil fuel resources. Integrating conventional power plants with concentrated solar power may facilitate the transition towards a more sustainable power production. In this paper, a novel natural gas-fired integrated solar combined-cycle power plant was proposed, evaluated, and optimized with exergy-based methods. The proposed system utilizes the advantages of combined-cycle power plants, direct steam generation, and linear Fresnel collectors to provide 475 MW baseload power in Aswan, Egypt. The proposed system is found to reach exergetic efficiencies of 50.7% and 58.1% for day and night operations, respectively. In economic analysis, a weighted average levelized cost of electricity of 40.0 $/MWh based on the number of day and night operation hours is identified. In exergoeconomic analysis, the costs of thermodynamic inefficiencies were identified and compared to the component cost rates. Different measures for component cost reduction and performance enhancement were identified and applied. Using iterative exergoeconomic optimization, the levelized cost of electricity is reduced to a weighted average of 39.2 $/MWh and a specific investment cost of 1088 $/kW. Finally, the proposed system is found to be competitive with existing integrated solar combined-cycle plants, while allowing a significantly higher solar share of 17% of the installed capacity.


2015 ◽  
Vol 785 ◽  
pp. 627-631 ◽  
Author(s):  
Hei Wei ◽  
Rasyidah Mohamed Idris

Datong area has abundant wind energy. Due to problem in large scale of wind power grid connection, this paper introduces virtual power plant concept. As for beginning, power source characteristics of the wind farm, pumped storage power station and the thermal power plant are taken for analysis. Three types of different power plants are chosen to represent the virtual power plant modeling as well as adopting the NSGA2 optimization. As a conclusion, this case study proved that virtual power plant can increase the benefits of each power plant and the wind power plant output power curve become smoother.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Cornelia Krome ◽  
Jan Höft ◽  
Volker Sander

Abstract In Germany and many other countries the energy market has been subject to significant changes. Instead of only a few large-scale producers that serve aggregated consumers, a shift towards regenerative energy sources is taking place. Energy systems are increasingly being made more flexible by decentralised producers and storage facilities, i.e. many consumers are also producers. The aggregation of producers form another type of power plants: a virtual power plant. On the basis of aggregated production and consumption, virtual power plants try to make decisions under the conditions of the electricity market or the grid condition. They are influenced by many different aspects. These include the current feed-in, weather data, or the demands of the consumers. Clearly, a virtual power plant is focusing on developing strategies to influence and optimise these factors. To accomplish this, many data sets can and should be analysed in order to interpret and create forecasts for energy systems. Time series based analytics are therefore of particular interest for virtual power plants. Classifying the different time series according to generators, consumers or customer types simplifies processes. In this way, scalable solutions for forecasts can be found. However, one has to first find the according clusters efficiently. This paper presents a method for determining clusters of time series. Models are adapted and model-based clustered using ARIMA parameters and an individual quality measure. In this way, the analysis of generic time series can be simplified and additional statements can be made with the help of graphical evaluations. To facilitate large scale virtual power plants, the presented clustering workflow is prepared to be applied on big data capable platforms, e.g. time series stored in Apache Cassandra, analysed through an Apache Spark execution framework. The procedure is shown here using the example of the Day-Ahead prices of the electricity market for 2018.


2020 ◽  
Author(s):  
Anubhav Jain ◽  
Jayachandra N. Sakamuri ◽  
Nicolaos A. Cutululis

Abstract. Large-scale integration of renewable energy sources with power-electronic converters is pushing the power system closer to its dynamic stability limit. This has increased the risk of wide-area blackouts. Thus, the changing generation profile in the power system necessitates the use of alternate sources of energy such as wind power plants, to provide blackstart services in the future. This however, requires grid-forming and not the traditionally prevalent grid-following wind turbines. In this paper, four different grid-forming control strategies have been implemented in an HVDC-connected wind farm. A simulation study has been carried out to test the different control schemes for the different stages of energization of onshore load by the wind farm. Their transient behaviour during transformer inrush, converter pre-charge and de-blocking, and onshore block-load pickup, has been compared to demonstrate the blackstart capabilities of grid-forming wind power plants for early participation in power system restoration.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongfu Tan ◽  
Qingkun Tan ◽  
Yuwei Wang

For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.


2021 ◽  
Author(s):  
Priyanka Shinde ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Mikael Amelin

<div>The stochastic nature of renewable energy sources has increased the need for intraday trading in electricity markets. Intraday markets provide the possibility to the market participants to modify their market positions based on their updated forecasts. In this paper, we propose a multistage stochastic programming approach to model the trading of a Virtual Power Plant (VPP), comprising thermal, wind and hydro power plants, in the Continuous Intraday (CID) electricity market. The order clearing in the CID market is enabled by the two presented models, namely the Immediate Order Clearing (IOC) and the Partial Order Clearing (POC). We tackle the proposed problem with a modified version of Stochastic Dual Dynamic Programming (SDDP) algorithm. The functionality of our model is demonstrated by performing illustrative and large scale case studies and comparing the performance with a benchmark model.</div>


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4739 ◽  
Author(s):  
Violeta Sánchez-Canales ◽  
Jorge Payá ◽  
José M. Corberán ◽  
Abdelrahman H. Hassan

One of the main challenges for a further integration of renewable energy sources in the electricity grid is the development of large-scale energy storage systems to overcome their intermittency. This paper presents the concept named CHEST (Compressed Heat Energy STorage), in which the excess electricity is employed to increase the temperature of a heat source by means of a high-temperature heat pump. This heat is stored in a combination of latent and sensible heat storage systems. Later, the stored heat is used to drive an organic Rankine cycle, and hereby to produce electricity when needed. A novel application of this storage system is presented by exploring its potential integration in the Spanish technical constraints electricity market. A detailed dynamic model of the proposed CHEST system was developed and applied to a case study of a 26-MW wind power plant in Spain. Different capacities of the storage system were assessed for the case under study. The results show that roundtrip efficiencies above 90% can be achieved in all the simulated scenarios and that the CHEST system can provide from 1% to 20% of the total energy contribution of the power plant, depending on its size. The CHEST concept could be economically feasible if its capital expenditure (CAPEX) ranges between 200 and 650 k€/MW.


2021 ◽  
Vol 23 (1) ◽  
pp. 22-28
Author(s):  
Đorđe Lazović ◽  
◽  
Kristina Džodić ◽  
Željko Đurišić

The future of European energy is moving towards a single European electricity market and an increasing share of renewables in the overall production mix. After the expiration of governmental incentive measures, power plants based on renewable energy sources will enter the liberalized market, where electricity prices will largely depend on the production of renewable energy sources. In order to achieve the maximum possible profit of the power plant under such conditions, it is necessary to consider the possibility of investing in solutions that are less represented today, but with the prospect of being more profitable in the future. Such a solution is a solar power plant consisting of vertically placed bifacial modules whose active surfaces are oriented in the east-west direction. This configuration of the power plant can achieve higher production in periods of high prices, and thus higher profits from the sale of electricity. On the other hand, such a solution is more expensive than a standard solar power plant with monofacial modules. In this paper, a comparison of return on investment in a bifacial power plant and a monofacial power plant with existing and prospective market conditions is performed. PVsyst software was used to analyze the solar potential and production profiles of photovoltaic power plants. The influence of solar power plant production on the price of electricity was investigated on the example of Germany. Based on this research, a prognostic model of the daily price diagram on the unified European market until 2040 was formed which served for the analysis of the profitability of investments in the two considered variants of the solar power plant realization.


Sign in / Sign up

Export Citation Format

Share Document