scholarly journals Wind Power: An Important Source in Energy Systems

Wind ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 90-91
Author(s):  
Zhe Chen

It is my great pleasure to welcome you to the inaugural issue of Wind [...]

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
W. I Abuzend ◽  
W. A El-Osta ◽  
M. A Ekhlat ◽  
E Borass

This paper investigates the costs that can be avoided by using wind energy in the central coastal area of Libya. The investigation of the capacity credit was performed in a previous work. The analysis included Fuel saving, capacity saving and emission reduction (NO, SO2 and CO2) to the atmosphere. The avoided costs were translated into equivalent energy costs of wind energy systems. The evaluation was conducted using the reliability (LOLP) analysis and the contribution of wind system during peak demand to the utility total electricity generation system. The calculations were carried out using WASP (Wien Automatic System Planning Package) for the proposed period of 2009-2019 where wind power installation would increase from 100 MW in 2009 to 500 MW in 2019. The results showed that the avoided costs of wind energy will increase from 2.4 c/kWh in 2009 to 8.6 c/kWh in 2019. The mean value of the avoided costs of wend energy over the 10-year period is 6 c/kWh, which would make wind power economically competitive with conventional power plants in Libya. Further investigations of detailed external costs of all energy systems in the national energy mix, as well as the feed in tariff, are recommended and should be introduced to the national energy sectors in order to promote implementation of wind energy and other renewable energy technologies.


2019 ◽  
Vol 9 (20) ◽  
pp. 4417 ◽  
Author(s):  
Sana Mujeeb ◽  
Turki Ali Alghamdi ◽  
Sameeh Ullah ◽  
Aisha Fatima ◽  
Nadeem Javaid ◽  
...  

Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model’s performance was evaluated on big data of Maine wind farm ISO NE, USA.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2164
Author(s):  
Vahid Arabzadeh ◽  
Peter D. Lund

Heat demand dominates the final energy use in northern cities. This study examines how changes in heat demand may affect solutions for zero-emission energy systems, energy system flexibility with variable renewable electricity production, and the use of existing energy systems for deep decarbonization. Helsinki city (60 °N) in the year 2050 is used as a case for the analysis. The future district heating demand is estimated considering activity-driven factors such as population increase, raising the ambient temperature, and building energy efficiency improvements. The effect of the heat demand on energy system transition is investigated through two scenarios. The BIO-GAS scenario employs emission-free gas technologies, bio-boilers and heat pumps. The WIND scenario is based on large-scale wind power with power-to-heat conversion, heat pumps, and bio-boilers. The BIO-GAS scenario combined with a low heat demand profile (−12% from 2018 level) yields 16% lower yearly costs compared to a business-as-usual higher heat demand. In the WIND-scenario, improving the lower heat demand in 2050 could save the annual system 6–13% in terms of cost, depending on the scale of wind power.


Sign in / Sign up

Export Citation Format

Share Document