Protein modeling by homology using the example of tick-borne encephalitis serine protease NS3

2020 ◽  
pp. 59-66
Author(s):  
Nikita Ilment ◽  
Ekaterina Zinina

Homology modeling is a process of obtaining a 3D structure of a protein using various algorithms based on already known structures of homologous proteins. The spatial structure of protein is required for in silico protein evaluation. 3D structures can be obtained using different methods: NMR, Xray crystallography (XRC), and cryo-electron microscopy (cryo-EM), but these methods require a lot of time and money. At the same time, the speed of nucleotide sequences analysis is increasing, thereby creating a mismatch between the number of decoded genomes and the investigated 3D protein structures that are encoded by these sequences. Also, homology modeling is the easiest and fastest way to obtain the model of the desired protein. This review describes free software for homology modelling — SWISS-MODEL and MODELLER, how to use it and how to evaluate the results.

2021 ◽  
Author(s):  
Michael Friedman ◽  
Chris Berndsen

Protocol for homology modeling proteins for use in Biochemistry I at James Madison University. Protocol guides students to use the SWISS-Model web server (citations below). Citations for servers: Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.


2019 ◽  
Vol 93 (7) ◽  
Author(s):  
Yuanzhu Gao ◽  
Shanshan Liu ◽  
Jiamiao Huang ◽  
Qianqian Wang ◽  
Kunpeng Li ◽  
...  

ABSTRACT Viruses associated with sleeping disease (SD) in crabs cause great economic losses to aquaculture, and no effective measures are available for their prevention. In this study, to help develop novel antiviral strategies, single-particle cryo-electron microscopy was applied to investigate viruses associated with SD. The results not only revealed the structure of mud crab dicistrovirus (MCDV) but also identified a novel mud crab tombus-like virus (MCTV) not previously detected using molecular biology methods. The structure of MCDV at a 3.5-Å resolution reveals three major capsid proteins (VP1 to VP3) organized into a pseudo-T=3 icosahedral capsid, and affirms the existence of VP4. Unusually, MCDV VP3 contains a long C-terminal region and forms a novel protrusion that has not been observed in other dicistrovirus. Our results also reveal that MCDV can release its genome via conformation changes of the protrusions when viral mixtures are heated. The structure of MCTV at a 3.3-Å resolution reveals a T= 3 icosahedral capsid with common features of both tombusviruses and nodaviruses. Furthermore, MCTV has a novel hydrophobic tunnel beneath the 5-fold vertex and 30 dimeric protrusions composed of the P-domains of the capsid protein at the 2-fold axes that are exposed on the virion surface. The structural features of MCTV are consistent with a novel type of virus. IMPORTANCE Pathogen identification is vital for unknown infectious outbreaks, especially for dual or multiple infections. Sleeping disease (SD) in crabs causes great economic losses to aquaculture worldwide. Here we report the discovery and identification of a novel virus in mud crabs with multiple infections that was not previously detected by molecular, immune, or traditional electron microscopy (EM) methods. High-resolution structures of pathogenic viruses are essential for a molecular understanding and developing new disease prevention methods. The three-dimensional (3D) structure of the mud crab tombus-like virus (MCTV) and mud crab dicistrovirus (MCDV) determined in this study could assist the development of antiviral inhibitors. The identification of a novel virus in multiple infections previously missed using other methods demonstrates the usefulness of this strategy for investigating multiple infectious outbreaks, even in humans and other animals.


2015 ◽  
Vol 112 (43) ◽  
pp. 13237-13242 ◽  
Author(s):  
Lorenzo Sborgi ◽  
Francesco Ravotti ◽  
Venkata P. Dandey ◽  
Mathias S. Dick ◽  
Adam Mazur ◽  
...  

Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms.


2000 ◽  
Vol 6 (S2) ◽  
pp. 244-245
Author(s):  
Jun Liu ◽  
Dianne Taylor ◽  
Kenneth A. Taylor

α-Actinin is an actin crosslinking protein identified in a wide variety of cells. Both muscle and nonmuscle isoforms of α-actinin have been characterized [1]. The molecule consists of two polypeptide chains that form a rod-shaped antiparallel dimer. Each polypeptide is composed of three distinct structural regions: actin-binding domain, four triple helical repeats that form a central rod, and a carboxyl terminal domain that contains two EF hand calcium-binding sites. Here we present the 3D structure of the smooth muscle α-actinin, as determined by cryo electron microscopy at 2.0 nm resolution.Two dimensional crystals of chicken gizzard α-actinin were formed on positively charged lipid monolayer [2] and preserved frozen hydrated for TEM. The crystal has a unit cell dimension of a = 26.31 nm, b = 20.37 nm, γ= 107.10°, based on internal calibration against TMV.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Melody G Campbell ◽  
David Veesler ◽  
Anchi Cheng ◽  
Clinton S Potter ◽  
Bridget Carragher

Recent developments in detector hardware and image-processing software have revolutionized single particle cryo-electron microscopy (cryoEM) and led to a wave of near-atomic resolution (typically ∼3.3 Å) reconstructions. Reaching resolutions higher than 3 Å is a prerequisite for structure-based drug design and for cryoEM to become widely interesting to pharmaceutical industries. We report here the structure of the 700 kDa Thermoplasma acidophilum 20S proteasome (T20S), determined at 2.8 Å resolution by single-particle cryoEM. The quality of the reconstruction enables identifying the rotameric conformation adopted by some amino-acid side chains (rotamers) and resolving ordered water molecules, in agreement with the expectations for crystal structures at similar resolutions. The results described in this manuscript demonstrate that single particle cryoEM is capable of competing with X-ray crystallography for determination of protein structures of suitable quality for rational drug design.


2010 ◽  
Vol 5 (4) ◽  
pp. 407-420 ◽  
Author(s):  
Anton Iershov ◽  
Konstantin Odynets ◽  
Alexander Kornelyuk ◽  
Vadim Kavsan

AbstractThe human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.


2019 ◽  
Vol 20 (17) ◽  
pp. 4186 ◽  
Author(s):  
Emeka Nwanochie ◽  
Vladimir N. Uversky

Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.


Sign in / Sign up

Export Citation Format

Share Document