scholarly journals On the role of El Niño — Global Atmospheric Oscillation in the interannual variability of hydrometeorological processes

2021 ◽  
pp. 329-370
Author(s):  
I.V. Serykh
2009 ◽  
Vol 22 (10) ◽  
pp. 2605-2623 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Antonio J. Busalacchi

Abstract Satellite- and gauge-based precipitation and sea surface temperature (SST) are analyzed to understand the role of SST in the east Pacific warm pool (EPWP) in the interannual variability of Central American rainfall. It is shown that, during the rainy season following the mature phase of an El Niño event, an anomalously warm EPWP can cause a rapid enhancement of the eastern Pacific intertropical convergence zone (EP ITCZ), which directly leads to a positive rainfall anomaly over Central America. Moreover, the timing and amplitude of the SST-enhanced EP ITCZ depends on the persistence of the El Niño event. The longer the equatorial SST anomaly persists, the longer the EPWP is subject to anomalous shortwave heating, and thus the stronger (and later) the subsequent SST enhancement of the EP ITCZ. The implications for regional climate monitoring and predictability are explored; potential predictability of seasonal rainfall is demonstrated 4 months in advance using an SST-based index designed to capture the essence of the above-mentioned mechanism.


2012 ◽  
Vol 25 (21) ◽  
pp. 7442-7466 ◽  
Author(s):  
N. J. Burls ◽  
C. J. C Reason ◽  
P. Penven ◽  
S. G. Philander

Sea surface temperature in the central-eastern equatorial Atlantic has a seasonal cycle far bigger than that of the Pacific, but interannual anomalies smaller than those of the Pacific. Given the amplitude of seasonal SST variability, one wonders whether the seasonal cycle in the Atlantic is so dominant that it is able to strongly influence the evolution of its interannual variability. In this study, interannual upper-ocean variability within the tropical Atlantic is viewed from an energetics perspective, and the role of ocean dynamics, in particular the role of ocean memory, within zonal mode events is investigated. Unlike in the Pacific where seasonal and interannual variability involve distinctly different processes, the results suggest that the latter is a modulation of the former in the Atlantic, whose seasonal cycle has similarities with El Niño and La Niña in the Pacific. The ocean memory mechanism associated with the zonal mode appears to operate on much shorter time scales than that associated with the El Niño–Southern Oscillation, largely being associated with interannual modulations of a seasonally active delayed negative feedback response. Differences between the El Niño–Southern Oscillation and the zonal mode can then be accounted for in terms of these distinctions. Anomalous wind power over the tropical Atlantic is shown to be a potential predictor for zonal mode events. However, because zonal mode events are due to a modulation of seasonally active coupled processes, and not independent processes operating on interannual time scales as seen in the Pacific, the lead time of this potential predictability is limited.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Abhik ◽  
Pandora Hope ◽  
Harry H. Hendon ◽  
Lindsay B. Hutley ◽  
Stephanie Johnson ◽  
...  

AbstractThis study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Using satellite-derived fractional canopy cover (FCC), variation of the mangrove canopies during recent decades are studied, including a severe dieback during 2015–2016. The relationship between mangrove FCC and climate conditions is examined with a focus on the possible role of the 2015–2016 El Niño in altering favorable conditions sustaining the mangroves. The mangrove FCC is shown to be coherent with the low-frequency component of sea level height (SLH) variation related to the El Niño Southern Oscillation (ENSO) cycle in the equatorial Pacific. The SLH drop associated with the 2015–2016 El Niño is identified to be the crucial factor leading to the dieback event. A stronger SLH drop occurred during austral autumn and winter, when the SLH anomalies were about 12% stronger than the previous very strong El Niño events. The persistent SLH drop occurred in the dry season of the year when SLH was seasonally at its lowest, so potentially exposed the mangroves to unprecedented hostile conditions. The influence of other key climate factors is also discussed, and a multiple linear regression model is developed to understand the combined role of the important climate variables on the mangrove FCC variation.


Sign in / Sign up

Export Citation Format

Share Document