Effect of multisegmental electrical stimulation in combination with proprioceptive stimulation of the spinal cord on changes in reflex excitability of motor neurons

Author(s):  
R.N. Yakupov ◽  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
I.V. Antipov ◽  
M.V. Balykin

The study involved 15 men with movement disorders of central origin. We used percutaneous electrical stimulation of the spinal cord with the application of electrodes in the projection of the lumbar thickening, proprioceptive stimulation, and their combination. The data obtained showed the effectiveness of the combined course of percutaneous electrical stimulation of the spinal cord and proprioceptive stimulation on changes in the excitability of spinal locomotor neural networks. Key words: electrical stimulation, spinal cord, proprioceptive stimulation, rehabilitation, motor neuron.

2021 ◽  
Author(s):  
D.A. Gladchenko ◽  
S.M. Bogdanov ◽  
L.V. Roshchina ◽  
A.A. Chelnokov

The article presents the results of a study of the reflex mechanisms of reciprocal and presynaptic inhibition at rest and when performing an isometric reduction of 5% of MPS against the background of twenty-minute non-invasive electrical stimulation of the spinal cord. It was found that at rest against the background of electrical stimulation, reciprocal and presynaptic inhibition was inverted to their relief, and when performing plantar flexion of the foot, on the contrary, reciprocal and presynaptic inhibition increased, but the severity of presynaptic inhibition was greater. Key words: percutaneous electrical stimulation of the spinal cord, reciprocal inhibition, presynaptic inhibition, isometric contraction.


1981 ◽  
Vol 44 (4) ◽  
pp. 207-217 ◽  
Author(s):  
Don M. Long ◽  
Donald Erickson ◽  
James Campbell ◽  
Richard North

2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


Author(s):  
Johannie Audet ◽  
Charly G. Lecomte

Tonic or phasic electrical epidural stimulation of the lumbosacral region of the spinal cord facilitates locomotion and standing in a variety of preclinical models with severe spinal cord injury. However, the mechanisms of epidural electrical stimulation that facilitate sensorimotor functions remain largely unknown. This review aims to address how epidural electrical stimulation interacts with spinal sensorimotor circuits and discusses the limitations that currently restrict the clinical implementation of this promising therapeutic approach.


2000 ◽  
Vol 203 (3) ◽  
pp. 435-445
Author(s):  
M. Wildman

The position of the coxal segment of the locust hind leg relative to the thorax is monitored by a variety of proprioceptors, including three chordotonal organs and a myochordotonal organ. The sensory neurons of two of these proprioceptors, the posterior joint chordotonal organ (pjCO) and the myochordotonal organ (MCO), have axons in the purely sensory metathoracic nerve 2C (N2C). The connections made by these afferents with metathoracic motor neurons innervating thoraco-coxal and wing muscles were investigated by electrical stimulation of N2C and by matching postsynaptic potentials in motor neurons with afferent spikes in N2C. Stretch applied to the anterior rotator muscle of the coxa (M121), with which the MCO is associated, evoked sensory spikes in N2C. Some of the MCO afferent neurons make direct excitatory chemical synaptic connections with motor neurons innervating the thoraco-coxal muscles M121, M126 and M125. Parallel polysynaptic pathways via unidentified interneurons also exist between MCO afferents and these motor neurons. Connections with the common inhibitor 1 neuron and motor neurons innervating the thoraco-coxal muscles M123/4 and wing muscles M113 and M127 are polysynaptic. Afferents of the pjCO also make polysynaptic connections with motor neurons innervating thoraco-coxal and wing muscles, but no evidence for monosynaptic pathways was found.


Sign in / Sign up

Export Citation Format

Share Document