Finite amplitude convection in a conditionally unstable stagnant air mass

Tellus ◽  
1964 ◽  
Vol 16 (2) ◽  
pp. 148-159
Author(s):  
S. M. A. Haque
Keyword(s):  
2015 ◽  
pp. 96-124
Author(s):  
E. G. Zibzeev ◽  
T. A. Nedovesova

The mountain systems are characterized by diverse ecological conditions (climate, geomorphological, soil, etc.). The wide spectrum of environmental conditions entails a rich diversity of plant communities growing on the small territory and determines the different flora and vegetation geneses. The uniqueness of floristic and coenotic diversities of the high-mountain vegetation of the south of Western Altai (Ivanovskiy, Prokhodnoi, and Rossypnoi Ranges) are associated with the effect of two climate-forcing factors such as the westerly humid air mass and dry warm airflow from the inner Kazakhstan regions. The paper summarizes the data on coenotic diversity (Zibzeev, 2010, 2012) and gives a syntaxonomic analysis of the high-mountain vege­tation in the Ivanovskii, Prokhodnoi, and Rossypnoi Ranges (Western Altai, Kazakhstan). The classification of plant communities was carried out using the Braun-Blanquet approach (Westhoff, van der Maarel, 1973). The relevés records were stored in the TURBOVEG database and classified by ­TWINSPAN (Hill 1979).


Tellus ◽  
1971 ◽  
Vol 23 (1) ◽  
pp. 82-86
Author(s):  
Robert R. Long

1988 ◽  
Vol 19 (1) ◽  
pp. 53-64 ◽  
Author(s):  
C. Corradini ◽  
F. Melone

Evidence is given of the distribution of pre-warm front rainfall at the meso-γ scale, together with a discussion of the main mechanisms producing this variability. An inland region in the Mediterranean area is considered. The selected rainfall type is commonly considered the most regular inasmuch as it is usually unaffected by extended convective motions. Despite this, within a storm a large variability in space was observed. For 90% of measurements, the typical deviations from the area-average total depth ranged from - 40 to 60 % and the storm ensemble-average rainfall rate over an hilly zone was 60 % greater than that in a contiguous low-land zone generally placed upwind. This variability is largely explained in terms of forced uplift of air mass over an envelope type orography. For a few storms smaller orographic effects were found in locations influenced by an orography with higher slopes and elevations. This feature is ascribed to the compact structure of these mountains which probably determines a deflection of air mass in the boundary layer. The importance of this type of analysis in the hydrological practice is also emphasized.


Sign in / Sign up

Export Citation Format

Share Document