Furniture. Assessment of surface resistance to cold liquids

2015 ◽  
Keyword(s):  
Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Junjie Shu ◽  
Yang Wang ◽  
Bei Guo ◽  
Weihua Qin ◽  
Lanxuan Liu ◽  
...  

Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3577
Author(s):  
Zbigniew Stempien ◽  
Mohmmad Khalid ◽  
Marcin Kozanecki ◽  
Paulina Filipczak ◽  
Angelika Wrzesińska ◽  
...  

In this work, we propose a novel method for the preparation of polypyrrole (PPy) layers on textile fabrics using a reactive inkjet printing technique with direct freezing of inks under varying temperature up to −16 °C. It was found that the surface resistance of PPy layers on polypropylene (PP) fabric, used as a standard support, linearly decreased from 6335 Ω/sq. to 792 Ω/sq. with the decrease of polymerization temperature from 23 °C to 0 °C. The lowest surface resistance (584 Ω/sq.) of PPy layer was obtained at −12 °C. The spectroscopic studies showed that the degree of the PPy oxidation as well as its conformation is practically independent of the polymerization temperature. Thus, observed tendences in electrical conductivity were assigned to change in PPy layer morphology, as it is significantly influenced by the reaction temperature: the lower the polymerization temperature the smoother the surface of PPy layer. The as-coated PPy layers on PP textile substrates were further assembled as the electrodes in symmetric all-solid-state supercapacitor devices to access their electrochemical performance. The electrochemical results demonstrate that the symmetric supercapacitor device made with the PPy prepared at −12 °C, showed the highest specific capacitance of 72.3 F/g at a current density of 0.6 A/g, and delivers an energy density of 6.12 Wh/kg with a corresponding power density of 139 W/kg.


Sign in / Sign up

Export Citation Format

Share Document