Cisterns for domestic use. Cold water storage and combined feed and expansion (thermoplastic) cisterns up to 500 l. Specification

2004 ◽  
Author(s):  
Bingde Chen ◽  
Haifeng Zheng ◽  
Jie Li

The influences of water sub-cooling on water discharge behaviors from the water storage tank were studied experimentally with a test rig, which consists of a water vessel, a steam supplier, valves and piping. From this study, it is found that the gravitational discharging process is effected strongly by the steam condensation, taking place between steam and cold water in the vessel during discharge. Increased sub-cooling of the water, enhances the steam condensation, and promotes a deeper penetration of steam into water. The two modes of condensation identified in this study are: steam-supply-limit-mode and steam-condensation-limit-mode. The first mode occurs at the primary discharge period if water sub-cooling is large than a certain value, for example, 50°C sub-cooling in this study. Conclusions were derived based on this study for the impact of subcooling on discharge characteristics with respect to flow, pressure, and other parameters. Some suggestions to avoid or reduce undesired phenomena are also presented.


2017 ◽  
Vol 28 (1) ◽  
pp. 76 ◽  
Author(s):  
G.D. Joubert ◽  
R.T. Dobson

The as-built and tested passive night-sky radiation cooling/heating system considered in this investigation consists of a radiation panel, a cold water storage tank, a hot water storage tank, a room and the interconnecting pipework. The stored cold water can be used to cool a room during the day, particularly in summer. A theoretical time-dependent thermal performance model was also developed and compared with the experimental results and it is shown that the theoretical simulation model captures the experimental system performance to within a reasonable degree of accuracy. A natural circulation experimental set-up was constructed and subsequently used to show that under local (Stellenbosch, South Africa) conditions the typical heat-removal rate from the water in the tank is 55 W/m2 of radiating panel during the night; during the day the water in the hot water-storage tank was heated from 24 °C to 62 °C at a rate of 96 W/m2. The system was also able to cool the room at a rate of 120 W/m3. The results thus confirmed that it is entirely plausible to design an entirely passive system, that is, without the use of any moving mechanical equipment such as pumps and active controls, for both room-cooling and water-heating. It is thus concluded that a passive night-sky radiation cooling/heating system is a viable energy-saving option and that the theoretical simulation, as presented, can be used with confidence as an energy-saving system design and evaluation tool. Keywords: passive cooling and heating, buoyancy-driven fluid flow, theoretical simulation, experimental verification Highlights:Passively driven renewable energy heating and cooling systems are considered.Time-dependent mathematical simulation model is presented.Experimental buoyancy-driven heating and cooling system built and tested.Experimental results demonstrate the applicability of the theoretical simulation model.Saving and evaluation design tool.


2019 ◽  
Vol 4 (1) ◽  
pp. 55-64
Author(s):  
Hafizt Azzari Aldaf ◽  
Indyah Hartami Santi ◽  
Yusniarsi Primasari

Nowdays, The development of water dispensers has hot and cold water technology, but fills water into cold and hot water storage tanks by lifting and putting the gallons on top of the dispenser so that water can flow into hot and cold water storage tanks, this is assessed less efficient. The purpose of making this tool is to make it easier for users to install gallons without having to lift the gallon and put it on top of the reservoir, it can also facilitate the taking of drinking water without having to press or open the faucet first. Because in modern era, the need for tools that work automatically and efficiently are increasing. The results of this study indicate that automatic water and faucet filler devices in dispensers using ultrasonic sensors as a whole work well and are in accordance with the function specified. The function of the ultrasonic sensor is as a reader the maximum limit of water level in the reservoir, so that when the water is in its maximum state, the pump will stop filling the reservoir. And the ultrasonic sensor in front of the dispenser functions to read the glass, the sensor will detect and then be received by the microcontroller and continue to execute the relay and open the selenoid so that the water can come out.


Sign in / Sign up

Export Citation Format

Share Document