scholarly journals DRUCKER-PRAGER MODELS FOR DYNAMIC ANALYSIS OF GRANULAR METAMATERIALS IN EARTHQUAKE ENGINEERING

2021 ◽  
Vol 4 (2) ◽  
pp. 5-11
Author(s):  
A.A. Al' Shemali A.A.

Problem of developing methods for protecting buildings and structures from the vibrations transmitted to them from the soil under the action of seismic effects is extremely important to date. One of these modern methods is seismic pads. The purpose of this work was to study the effectiveness of adding a pad of granu-lar metamaterials under the foundation of the building to decrease influence of seismic shear waves. The Finite Element Analysis of Mohr-Coulomb models was used to achieve this goal. The FE model consists of a ten-story superstructure rested on the slab foundation, under which there is a layer of granular metamateri-als. The values of five variables that affect the mechanical properties of these metamaterials were analyzed (density – cohesion – internal friction angle – Young's modulus – Poisson's ratio) for two different pad thicknesses. The dynamic analysis performed using the software package Abaqus/CAE showed the effec-tiveness of the granular metamaterials in their ability to significantly reduce magnitudes of displacements, velocities and accelerations in the building compared to the same values in the absence of these metamateri-als. The analysis also revealed that among the studied variables, the cohesion is the parameter most influenc-ing the effectiveness of metamaterials in their ability to dissipate seismic waves, while no significant effect was observed for the other parameters

2021 ◽  
Vol 4 (3) ◽  
pp. 54-60
Author(s):  
S. Kuznecov ◽  
A. Al' Shemali

the problem of protecting buildings and structures from vibrations of natural and artificial nature is im-portant for modern construction. One of such modern methods of protection is seismic pads. The purpose of this work was to study the effect of adding a layer of granular metamaterial under a slab foundation on the vibration of a building under the influence of seismic shear waves (S-waves). To achieve this objective, the finite element method (FEM) was used in combination with Cam-Clay models. The FE model consists of a ten-story superstructure rested on the slab foundation, under which there is a layer of granular metamateri-als. 16 models were created taking into account changes in the values of these parameters (pad thickness; density; cohesion; critical state strength parameter (M); Young's modulus-Poisson's ratio). The dynamic analysis performed using the software package Abaqus/CAE showed the effectiveness of granular met-amaterials in their ability to dissipate seismic energy and significantly reduce vibration transmitted from the ground to the building.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


2017 ◽  
Vol 7 ◽  
pp. 219-223
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armagan Fatih Karamanli

Aims The aim of this study is to evaluate the effects of the chincup appliance used in the treatment of Class III malocclusions, not only on the mandible or temporomandibular joint (TMJ) but also on all the craniofacial structures. Materials and Methods Chincup simulation was performed on a three-dimensional finite element (FE) model. 1000 g (500 g per side) force was applied in the direction of chin-condyle head. Nonlinear FE analysis was used as the numerical analysis method. Results By the application of chincup, stresses were distributed not only on TMJ or mandible but also on the circummaxillary sutures and other craniofacial structures. Conclusions Clinical changes obtained by chincup treatment in Class III malocclusions are not limited by only mandible. It was seen that also further structures were affected.


2013 ◽  
Vol 454 ◽  
pp. 27-33
Author(s):  
Bin Wang ◽  
Ying Li ◽  
Na Lv ◽  
Bin Bin Zhu ◽  
Wei Li

The control working condition and the control load direction of the typical Tripod substructure for the offshore wind turbine are studied by the finite element analysis software SACS. The results show that the different control criterions are corresponding to the different control working conditions for the Tripod substructure of the offshore wind turbine, and the control load directions vary with the structure form and the marine environments. Therefore, the static and dynamic analysis of the offshore wind turbine substructure in the single or limited load directions cant reflect the static and dynamic characteristic of the structure sufficiently. The multidirectional static and dynamic analysis of the offshore wind turbine structure has to be carried out.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2015 ◽  
Vol 789-790 ◽  
pp. 3-6
Author(s):  
Tomasz Trzepieciński ◽  
Anna Bazan ◽  
Hirpa G. Lemu

The article presents a method of determining the anisotropic friction model in metal forming using multilayer artificial neural networks based on experimental data obtained from the pin-on-disk tribometer. The experimental results show that the friction coefficient depends on the measured angle from the rolling direction and corresponds to the surface topography. Both the friction and material anisotropic models were implemented into a finite element (FE) model built using the commercial FE-package ABAQUS/Standard. When both the material and friction anisotropy are taken into account in the finite element analysis, this approach gives the most approximate numerical results to real processes.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Hetao Hou ◽  
Su Ma ◽  
Bing Qu ◽  
Yanhong Liang ◽  
Yanjun Jin ◽  
...  

One steel grid and five thin-walled concrete-filled steel tubes (CTST) used as the supports of tunnel were tested in site for investigating the mechanical behavior. The mechanical influences of thickness, node form, and concrete on CTST were gained and compared with the impacts on steel grid. It is indicated that high antideformation capacity of CTST improved the stability of surrounding rock in short time. The cementitious grouted sleeve connection exhibited superior flexibility when CTST was erected and built. Although the deformation of rock and soil in the tunnel was increasing, good compression resistance was observed by CTST with the new connection type. It was also seen that vault, tube foot, and connections were with larger absolute strain values. The finite element analysis (FEA) was carried out using ABAQUS program. The results were validated by comparison with experimental results. The FE model could be referred by similar projects.


2013 ◽  
Vol 465-466 ◽  
pp. 699-703 ◽  
Author(s):  
S. Hassan ◽  
Erween Abdul Rahim ◽  
Zazuli Mohid ◽  
N.M. Warap

Dynamic analysis is very important in developing machine structure to sustain the required accuracy, reliability and productivity. The objective of this study is to conduct a dynamic and modal analyses of micro-milling machine. The machine designs were predicted by comparing the Finite Element Analysis (FEA) using ANSYS software and experimental hammer testing. Two micro-milling machine designs have been proposed. Natural frequency and mode shape was analyzed in modal analysis which show the result that first mode recorded frequency of 92.086 Hz for design A and 154.78 Hz for design B. Natural frequency of design B was higher than design A. From the comparision, it can be concluded that Design B was selected as a best design.


Author(s):  
Yunsup Shin ◽  
Morten Saue ◽  
Thomas Langford ◽  
Hans Petter ◽  
Kyunghwan Cho ◽  
...  

Offshore wind structures are subjected to cyclic loadings from wind, wave and current which must be accounted for when designing foundations. The effects of cyclic loadings can govern the dimension of the foundations. However, less standard and calculation procedure for designing foundations under cyclic loadings is generally accepted in practical design. A parametric study at the generic clay profiles were carried out by using the conventional beam column approach and the finite element analysis. In addition, a monopile foundation at the layered soil profiles in Korean West Sea were designed taking into cyclic loading effect account. Both design results show that the bending moments and shear forces along the pile by using beam column approach are larger than the results from the FE analysis. The FE analysis gives less pile displacement and rotation than the beam column approach. The reason for these differences can be partially explained by the soil reactions in the upper soil profiles. For the clay layers the lateral soil resistance is generally higher in the FE analyses compared to the cyclic p-y curves. However the lateral resistance in the silt sand layers is greater by using the standard cyclic p-y curves with a drained friction angle than using the constitutive models applying cyclic properties. Based on the results, a practical approach of monopile design for the specific offshore location can be recommended by calibrating and simplifying cyclic p-y curves from the results of FE analyses taking into account the cyclic stress-stain response of the soil.


Sign in / Sign up

Export Citation Format

Share Document