Bringing Security to The Smallest Embedded Systems

2017 ◽  
Author(s):  
JOSEPH YIU

The increasing need for security in microcontrollers Security has long been a significant challenge in microcontroller applications(MCUs). Traditionally, many microcontroller systems did not have strong security measures against remote attacks as most of them are not connected to the Internet, and many microcontrollers are deemed to be cheap and simple. With the growth of IoT (Internet of Things), security in low cost microcontrollers moved toward the spotlight and the security requirements of these IoT devices are now just as critical as high-end systems due to:

2019 ◽  
Vol 6 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


Author(s):  
Yash Choudhary ◽  
B Umamaheswari ◽  
Vijeta Kumawat

IoT or the Internet of things refers to all the physical devices connected to the internet. IoT consists of computing devices that are web-enabled and have the capability of sensing, collecting, and sending data. IoT provides the ability to remote control appliances and has many more applications. Since IoT is becoming a big part of society, it is necessary to ensure that these devices provide adequate security measures. This paper discusses various security issues in IoT systems like threats, vulnerabilities and some countermeasures which can be used to provide some security. Developing a secure device is now more important than ever, as with the increase in digitization, much of a user’s data is available on these devices. Securing data is a primary concern in any system, as internet-enabled devices are easier to hack. The idea of this paper is to spread awareness and improve the security of IoT devices.


2020 ◽  
Vol 17 (10) ◽  
pp. 495-503
Author(s):  
Lene N. Johannessen ◽  
Hans Jørgen Grimstad ◽  
Jens Emil Skjetne ◽  
Ida Nord Myklebust ◽  
Kristin V. Hirsch Svendsen

Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


Author(s):  
Awad Saad Al-Qahtani, Mohammad Ayoub Khan Awad Saad Al-Qahtani, Mohammad Ayoub Khan

The Internet of things (IOT) users lack awareness of IOT security infrastructure to handle the risks including Threats, attack and penetration associated with its use. IOT devices are main targets for cyber-attacks due to variable personally identifiable information (PII) stored and transmit in the cyber centers. The security risks of the Internet of Things aimed to damage user's security and privacy. All information about users can be collected from their related objects which are stored in the system or transferred through mediums among diverse smart objects and may exposed to exposed dangerous of attacks and threats if it lack authentication so there are essential need to make IOT security requirements as important part of its efficient implementation. These requirements include; availability, accountability, authentication, authorization, privacy and confidentiality, Integrity and Non-repudiation. The study design is a survey research to investigate the visibility of the proposed model of security management for IOT uses, the security risks of IOT devices, and the changes IOT technology on the IT infrastructure of IOT users through answering of the research questionnaires. This work proposes a model of security management for IOT to predict IOT security and privacy threats, protect IOT users from any unforeseen dangers, and determine the right security mechanisms and protocols for IOT security layers, as well as give the most convenient security mechanisms. Moreover, for enhancing the performance of IOT networks by selecting suitable security mechanisms for IOT layers to increase IOT user's security satisfaction.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2320
Author(s):  
Zawar Shah ◽  
Andrew Levula ◽  
Khawar Khurshid ◽  
Jawad Ahmed ◽  
Imdad Ullah ◽  
...  

The Internet of Things (IoT) is aimed to provide efficient and seamless connectivity to a large number of low-power and low-cost embedded devices, consequently, the routing protocols play a fundamental role in achieving these goals. The IETF has recently standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) for LLNs (i.e., Low-power and Lossy Networks) and is well-accepted among the Internet community. However, RPL was proposed for static IoT devices and suffers from many issues when IoT devices are mobile. In this paper, we first present various issues that are faced by the RPL when IoT devices are mobile. We then carry out a detailed survey of various solutions that are proposed in the current literature to mitigate the issues faced by RPL. We classify various solutions into five categories i.e., ‘Trickle-timer based solutions’, ‘ETX based solutions’, ‘RSSI based solutions’, ‘Position-based solutions’, and ‘Miscellaneous solutions’. For each category of these solutions, we illustrate their working principles, issues addressed and make a thorough assessment of their strengths and weaknesses. In addition, we found several flaws in the performance analysis done by the authors of each of the solutions, e.g., nodes mobility, time intervals, etc., and suggest further investigations for the performance evaluations of these solutions in order to assess their applicability in real-world environments. Moreover, we provide future research directions for RPL supporting various real-time applications, mobility support, energy-aware, and privacy-aware routing.


Internet of Things (IoT) involves interconnecting smart devices for data collection and making intelligent decisions where, the usual devices become autonomous and smart. With the swift and fast paced developments in the area of smart cities, smart homes, and smart everything the Internet of Things (IoT) is creating an exceptional role that has scope for immense growth and potential. Its objective is the seamless integration of digital and physical worlds into one ecosystem that would lead to the latest intelligent era of the Internet. This state of the art technology can offer huge potential for businesses and offer opportunities for already existent areas like healthcare, energy etc. Yet due to insufficient security techniques IoT is not completely fool proof against security breaches and privacy issues. Since IoT is made up of devices that are resourceconstrained and it has a complex environment, which makes enforcement of security measures even more complicated and tricky. This is where Blockchain’s (BC) “security by design” comes in; that is capable of tackling IoT’s foremost security requirements. Features like transparency, data encryption, auditability, operational resilience and immutability can help remove IoT’s architectural shortcomings. This paper focuses on this relationship and surveys the most relevant work in this area, for analyzing how blockchain is capable of solving the issues related to authorization and access control for IoT environments.


Network ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 28-49
Author(s):  
Ehsan Ahvar ◽  
Shohreh Ahvar ◽  
Syed Mohsan Raza ◽  
Jose Manuel Sanchez Vilchez ◽  
Gyu Myoung Lee

In recent years, the number of objects connected to the internet have significantly increased. Increasing the number of connected devices to the internet is transforming today’s Internet of Things (IoT) into massive IoT of the future. It is predicted that, in a few years, a high communication and computation capacity will be required to meet the demands of massive IoT devices and applications requiring data sharing and processing. 5G and beyond mobile networks are expected to fulfill a part of these requirements by providing a data rate of up to terabits per second. It will be a key enabler to support massive IoT and emerging mission critical applications with strict delay constraints. On the other hand, the next generation of software-defined networking (SDN) with emerging cloudrelated technologies (e.g., fog and edge computing) can play an important role in supporting and implementing the above-mentioned applications. This paper sets out the potential opportunities and important challenges that must be addressed in considering options for using SDN in hybrid cloud-fog systems to support 5G and beyond-enabled applications.


Sign in / Sign up

Export Citation Format

Share Document