Faculty Opinions recommendation of The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome.

Author(s):  
Bonnie Bassler
2003 ◽  
Vol 185 (16) ◽  
pp. 4825-4836 ◽  
Author(s):  
Gabriela Kovacikova ◽  
Wei Lin ◽  
Karen Skorupski

ABSTRACT Activation of the tcpPH promoter on the Vibrio pathogenicity island by AphA and AphB initiates the Vibrio cholerae virulence cascade and is regulated by quorum sensing through the repressive action of HapR on aphA expression. To further understand how the chromosomally encoded AphA protein activates tcpPH expression, site-directed mutagenesis was used to identify the base pairs critical for AphA binding and transcriptional activation. This analysis revealed a region of partial dyad symmetry, TATGCA-N6-TNCNNA, that is important for both of these activities. Searching the V. cholerae genome for this binding site permitted the identification of a second one upstream of a penicillin V amidase (PVA) gene on the small chromosome. AphA binds to and footprints this site, which overlaps the pva transcriptional start, consistent with its role as a repressor at this promoter. Since aphA expression is under quorum-sensing control, the response regulators LuxO and HapR also influence pva expression. Thus, pva is repressed at low cell density when AphA levels are high, and it is derepressed at high cell density when AphA levels are reduced. Penicillin amidases are thought to function as scavengers for phenylacetylated compounds in the nonparasitic environment. That AphA oppositely regulates the expression of pva from that of virulence, together with the observation that PVA does not play a role in virulence, suggests that these activities are coordinated to serve V. cholerae in different biological niches.


Cell ◽  
2002 ◽  
Vol 110 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Melissa B. Miller ◽  
Karen Skorupski ◽  
Derrick H. Lenz ◽  
Ronald K. Taylor ◽  
Bonnie L. Bassler

1993 ◽  
Vol 15 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Olivera Francetić ◽  
Nada Marjanović ◽  
Vojo Deretic ◽  
Vladimir Glišin

2008 ◽  
Vol 190 (7) ◽  
pp. 2527-2536 ◽  
Author(s):  
Christopher M. Waters ◽  
Wenyun Lu ◽  
Joshua D. Rabinowitz ◽  
Bonnie L. Bassler

ABSTRACT Two chemical signaling systems, quorum sensing (QS) and 3′,5′-cyclic diguanylic acid (c-di-GMP), reciprocally control biofilm formation in Vibrio cholerae. QS is the process by which bacteria communicate via the secretion and detection of autoinducers, and in V. cholerae, QS represses biofilm formation. c-di-GMP is an intracellular second messenger that contains information regarding local environmental conditions, and in V. cholerae, c-di-GMP activates biofilm formation. Here we show that HapR, a major regulator of QS, represses biofilm formation in V. cholerae through two distinct mechanisms. HapR controls the transcription of 14 genes encoding a group of proteins that synthesize and degrade c-di-GMP. The net effect of this transcriptional program is a reduction in cellular c-di-GMP levels at high cell density and, consequently, a decrease in biofilm formation. Increasing the c-di-GMP concentration at high cell density to the level present in the low-cell-density QS state restores biofilm formation, showing that c-di-GMP is epistatic to QS in the control of biofilm formation in V. cholerae. In addition, HapR binds to and directly represses the expression of the biofilm transcriptional activator, vpsT. Together, our results suggest that V. cholerae integrates information about the vicinal bacterial community contained in extracellular QS autoinducers with the intracellular environmental information encoded in c-di-GMP to control biofilm formation.


2006 ◽  
Vol 188 (7) ◽  
pp. 2446-2453 ◽  
Author(s):  
Zhi Liu ◽  
Ansel Hsiao ◽  
Adam Joelsson ◽  
Jun Zhu

ABSTRACT Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. A number of environmental stimuli regulate virulence gene expression in V. cholerae, including quorum-sensing signals. At high cell densities, quorum sensing in V. cholerae invokes a series of signal transduction pathways in order to activate the expression of the master regulator HapR, which then represses the virulence regulon and biofilm-related genes and activates protease production. In this study, we identified a transcriptional regulator, VqmA (VCA1078), that activates hapR expression at low cell densities. Under in vitro inducing conditions, constitutive expression of VqmA represses the virulence regulon in a HapR-dependent manner. VqmA increases hapR transcription as measured by the activity of the hapR-lacZ reporter, and it increases HapR production as measured by Western blotting. Using a heterogenous luxCDABE cosmid, we found that VqmA stimulates quorum-sensing regulation at lower cell densities and that this stimulation bypasses the known LuxO-small-RNA regulatory circuits. Furthermore, we showed that VqmA regulates hapR transcription directly by binding to its promoter region and that expression of vqmA is cell density dependent and autoregulated. The physiological role of VqmA is also discussed.


Sign in / Sign up

Export Citation Format

Share Document