Faculty Opinions recommendation of Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds.

Author(s):  
Elizabeth Gould
Keyword(s):  
2021 ◽  
Author(s):  
Julie M Sadino ◽  
Xander G Bradeen ◽  
Conor J Kelly ◽  
Deena M Walker ◽  
Zoe R Donaldson

The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show behavioral and neuroendocrine stress phenotypes that diminish over time. Eventually, they can form a new bond, a key indicator of adapting to the loss of their partner. Thus, prairie voles provide an ethologically-relevant model for examining neuromolecular changes that emerge following partner separation for adapting to loss. Here, we test the hypothesis that extended partner separation diminishes pair bond-associated behaviors (partner preference and selective aggression) and causes pair bond transcriptional signatures to erode. Pairs were cohoused for 2 weeks and then either remained paired or were separated for 48hrs or 4wks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner preference and selective aggression at these time points. Surprisingly, pair bond-associated behaviors persist despite prolonged separation and are similar between same-sex and opposite-sex paired voles. In contrast, we found that opposite-sex pair bonding, as compared with same-sex pairing, led to changes in accumbal transcription that were stably maintained as long as animals remained paired but eroded following prolonged partner separation. Eroded genes are primarily associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in maintaining pair bonds and adapting to partner loss. We further reasoned that relevant neuronal transcriptional changes may have been masked by the prominent transcriptional signals associated with glia. Thus, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally-enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters whose expression patterns are sensitive to acute pair bond disruption and loss adaptation. Together, our results suggest that partner separation results in erosion of transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes central to priming a vole to be able to form a new bond.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Shanna L Resendez ◽  
Piper C Keyes ◽  
Jeremy J Day ◽  
Caely Hambro ◽  
Curtis J Austin ◽  
...  

Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds.


Author(s):  
Shanna L Resendez ◽  
Piper C Keyes ◽  
Jeremy J Day ◽  
Caely Hambro ◽  
Curtis J Austin ◽  
...  

2005 ◽  
Vol 9 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Brandon J Aragona ◽  
Yan Liu ◽  
Y Joy Yu ◽  
J Thomas Curtis ◽  
Jacqueline M Detwiler ◽  
...  
Keyword(s):  

2020 ◽  
Vol 31 (2) ◽  
pp. 62-68
Author(s):  
Sara E. Holm ◽  
Alexander Schmidt ◽  
Christoph J. Ploner

Abstract. Some people, although they are perfectly healthy and happy, cannot enjoy music. These individuals have musical anhedonia, a condition which can be congenital or may occur after focal brain damage. To date, only a few cases of acquired musical anhedonia have been reported in the literature with lesions of the temporo-parietal cortex being particularly important. Even less literature exists on congenital musical anhedonia, in which impaired connectivity of temporal brain regions with the Nucleus accumbens is implicated. Nonetheless, there is no precise information on the prevalence, causes or exact localization of both congenital and acquired musical anhedonia. However, the frequent involvement of temporo-parietal brain regions in neurological disorders such as stroke suggest the possibility of a high prevalence of this disorder, which leads to a considerable reduction in the quality of life.


2020 ◽  
Vol 134 (4) ◽  
pp. 309-322 ◽  
Author(s):  
Tristan J. Hynes ◽  
Jacqueline-Marie M. Ferland ◽  
Tanya L. Feng ◽  
Wendy K. Adams ◽  
Mason M. Silveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document