Faculty Opinions recommendation of Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow.

Author(s):  
Steve Ward
2003 ◽  
Vol 161 (2) ◽  
pp. 417-427 ◽  
Author(s):  
Mika Shimonaka ◽  
Koko Katagiri ◽  
Toshinori Nakayama ◽  
Naoya Fujita ◽  
Takashi Tsuruo ◽  
...  

Chemokines arrest circulating lymphocytes within the vasculature through the rapid up-regulation of leukocyte integrin adhesive activity, promoting subsequent lymphocyte transmigration. However, the key regulatory molecules regulating this process have remained elusive. Here, we demonstrate that Rap1 plays a pivotal role in chemokine-induced integrin activation and migration. Rap1 was activated by secondary lymphoid tissue chemokine (SLC; CCL21) and stromal-derived factor 1 (CXCL4) treatment in lymphocytes within seconds. Inhibition of Rap1 by Spa1, a Rap1-specific GTPase-activating protein, abrogated chemokine-stimulated lymphocyte rapid adhesion to endothelial cells under flow via intercellular adhesion molecule 1. Expression of a dominant active Rap1V12 in lymphocytes stimulated shear-resistant adhesion, robust cell migration on immobilized intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, and transendothelial migration under flow. We also demonstrated that Rap1V12 expression in lymphocytes induced a polarized morphology, accompanied by the redistribution of CXCR4 and CD44 to the leading edge and uropod, respectively. Spa1 effectively suppressed this polarization after SLC treatment. This unique characteristic of Rap1 may control chemokine-induced lymphocyte extravasation.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4437-4445 ◽  
Author(s):  
Ronen Alon ◽  
Memet Aker ◽  
Sara Feigelson ◽  
Maya Sokolovsky-Eisenberg ◽  
Donald E. Staunton ◽  
...  

Abstract Leukocyte arrest on vascular endothelium under disruptive shear flow is a multistep process that requires in situ integrin activation on the leukocyte surface by endothelium-displayed chemoattractants, primarily chemokines. A genetic deficiency of leukocyte adhesion to endothelium associated with defective β2 integrin expression or function (LAD-1) has been described. We now report a novel severe genetic disorder in this multistep process associated with functional defects in multiple leukocyte integrins, reflected in recurrent infections, profound leukocytosis, and a bleeding tendency. This syndrome is associated with an impaired ability of neutrophil and lymphocyte β1 and β2 integrins to generate high avidity to their endothelial ligands and arrest cells on vascular endothelium in response to endothelial chemoattractant signals. Patient leukocytes roll normally on endothelial selectins, express intact integrins and G protein–coupled chemokine receptors (GPCR), spread on integrin ligands, and migrate normally along a chemotactic gradient. Activation of β2 integrins in response to GPCR signals and intrinsic soluble ligand binding properties of the very late activation antigen-4 (VLA-4) integrin are also retained in patient leukocytes. Nevertheless, all integrins fail to generate firm adhesion to immobilized ligands in response to in situ GPCR-mediated activation by chemokines or chemoattractants, a result of a primary defect in integrin rearrangement at ligand-bearing contacts. This syndrome is the first example of a human integrin-activation deficiency associated with defective GPCR stimulation of integrin avidity at subsecond contacts, a key step in leukocyte arrest on vascular endothelium under shear flow.


Author(s):  
Beth Burnside

The vertebrate photoreceptor provides a drammatic example of cell polarization. Specialized to carry out phototransduction at its distal end and to synapse with retinal interneurons at its proximal end, this long slender cell has a uniquely polarized morphology which is reflected in a similarly polarized cytoskeleton. Membranes bearing photopigment are localized in the outer segment, a modified sensory cilium. Sodium pumps which maintain the dark current critical to photosensory transduction are anchored along the inner segment plasma membrane between the outer segment and the nucleus.Proximal to the nucleus is a slender axon terminating in specialized invaginating synapses with other neurons of the retina. Though photoreceptor diameter is only 3-8u, its length from the tip of the outer segment to the synapse may be as great as 200μ. This peculiar linear cell morphology poses special logistical problems and has evoked interesting solutions for numerous cell functions. For example, the outer segment membranes turn over by means of a unique mechanism in which new disks are continuously added at the proximal base of the outer segment, while effete disks are discarded at the tip and phagocytosed by the retinal pigment epithelium. Outer segment proteins are synthesized in the Golgi near the nucleus and must be transported north through the inner segment to their sites of assembly into the outer segment, while synaptic proteins must be transported south through the axon to the synapse.The role of the cytoskeleton in photoreceptor motile processes is being intensely investigated in several laboratories.


2000 ◽  
Vol 7 (3) ◽  
pp. 201-214 ◽  
Author(s):  
Yaw-Chyn Lim ◽  
Matthew W Wakelin ◽  
Lori Henault ◽  
Douglas J Goetz ◽  
Ted Yednock ◽  
...  

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
A Lavaud ◽  
R Soletti ◽  
P Richomme ◽  
R Andriantsitohaina ◽  
D Guilet

2014 ◽  
Vol 122 (03) ◽  
Author(s):  
VI Alexaki ◽  
I Charalampopoulos ◽  
A Neuwirth ◽  
B Soehnnichsen ◽  
C Echeverri ◽  
...  

1978 ◽  
Vol 39 (01) ◽  
pp. 201-209 ◽  
Author(s):  
Hiroshi Hasegawa ◽  
Hiroshi Nagata ◽  
Makoto Murao

SummaryAttempts were made to demonstrate ultrastructural changes of the tissue thromboplastin after intravenous injection, as a model experiment on the pulmonary microthrombi formation induced by the tissue thromboplastin circulating from venous return.Concentrically arranged membrane structures of the injected thromboplastin disappeared in extremely short time after the injection of the thromboplastin in rabbits. The long sheet membrane of the injected thromboplastin was frequently seen as adhered to the vascular endothelium or to the surface of blood corpuscles. Furthermore, fibrin fibres were formed in contact with the long sheet membrane of the thromboplastin. Membrane structures were not found anywhere in the control rabbits.


1989 ◽  
Vol 61 (01) ◽  
pp. 150-151 ◽  
Author(s):  
R Musso ◽  
A Longo ◽  
R R Cacciola ◽  
A Lombardo ◽  
R Giustolisi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document