Faculty Opinions recommendation of Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity.

Author(s):  
Victor Engelhard
Immunity ◽  
2003 ◽  
Vol 19 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Andrea A Itano ◽  
Stephen J McSorley ◽  
R.Lee Reinhardt ◽  
Benjamin D Ehst ◽  
Elizabeth Ingulli ◽  
...  

PLoS ONE ◽  
2008 ◽  
Vol 3 (2) ◽  
pp. e1691 ◽  
Author(s):  
Adele M. Mount ◽  
Christopher M. Smith ◽  
Fiona Kupresanin ◽  
Kristina Stoermer ◽  
William R. Heath ◽  
...  

Author(s):  
Weiming Yang ◽  
Weiheng Zhang ◽  
Xiaozhong Wang ◽  
Liming Tan ◽  
Hua Li ◽  
...  

Background: The antigen HCA587 (also known as MAGE-C2), which is considered a cancer-testis antigen, exhibits upregulated expression in a wide range of malignant tumors with unique immunological properties, and may thus serve as a promising target for tumor immunotherapy. Objective: To explore the antitumor effect of the HCA587 protein vaccine and the response of humoral and cell-mediated immunity. Methods: The HCA587 protein vaccine was formulated with adjuvants CpG and and ISCOM. B16 melanoma cells were subcutaneously inoculated to C57BL/6 mice, followed by treatment with HCA587 protein vaccine subcutaneously. Mouse survival was monitored daily, and tumor volume was measured every 2 to 3 days. The tumor sizes, survival time and immune cells in tumor tissues were detected. And the vital immune cell subset and effector molecules were explored. Results: After treatment with HCA587 protein vaccine, the vaccination generated elicited significant immune responses, which delayed tumor growth and improved animal survival. The vaccination increased the proportion of CD4+ T cells expressing IFN-γ and granzyme B in tumor tissues. Depletion of CD4+T cells resulted in an almost complete abrogation of the antitumor effect of the vaccination, suggesting that the antitumor efficacy was mediated by CD4+ T cells. In addition, knockout of IFN-γ resulted in a decrease in granzyme B levels which were secreted by CD4+ T cells, and the antitumor effect was also significantly attenuated. Conclusion: The HCA587 protein vaccine may increase the levels of granzyme B expressed by CD4+ T cells, and this increase is dependent on IFN-γ, and the vaccine resulted in a specific tumor immune response and subsequent eradication of the tumor.


2002 ◽  
Vol 168 (3) ◽  
pp. 1060-1068 ◽  
Author(s):  
Loredana Frasca ◽  
Cristiano Scottà ◽  
Giovanna Lombardi ◽  
Enza Piccolella

1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


Sign in / Sign up

Export Citation Format

Share Document