Faculty Opinions recommendation of Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement.

Author(s):  
Steve Ward
2004 ◽  
Vol 167 (3) ◽  
pp. 505-518 ◽  
Author(s):  
Atsuo T. Sasaki ◽  
Cheryl Chun ◽  
Kosuke Takeda ◽  
Richard A. Firtel

During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P3, the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P3 asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal.


2011 ◽  
Vol 433 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Maud Hertzog ◽  
Philippe Chavrier

Motile processes are critical for several physiological and pathological situations such as embryonic development, tumour dissemination and metastasis. Migrating cells, or developing neurons, need to establish front–rear polarity consisting of actin-driven extension of the leading edge and traffic of components that are essential for membrane extension and cell adhesion at the front. Previously, several studies have suggested that the exocyst complex is critical for the establishment and maintenance of cell polarity. This octameric complex controls the docking and insertion of exocytic vesicles to growing areas of the plasma membrane. The aim of the present review is to detail recent advances concerning the molecular and structural organization of the exocyst complex that help to elucidate its role in cell polarity. We will also review the function of the exocyst complex and some of its key interacting partners [including the small GTP-binding protein Ral, aPKCs (atypical protein kinase Cs) and proteins involved in actin assembly] in the formation of plasma extensions at the leading edge, growth cone formation during axonal extension and generation of cell movement.


2006 ◽  
Vol 176 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erik Sahai ◽  
Raquel Garcia-Medina ◽  
Jacques Pouysségur ◽  
Emmanuel Vial

Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal–amoeboid–like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.


2000 ◽  
Vol 13 (5) ◽  
pp. 520-528 ◽  
Author(s):  
M. Erhardt ◽  
M. Morant ◽  
C. Ritzenthaler ◽  
C. Stussi-Garaud ◽  
H. Guilley ◽  
...  

Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins—P42, P13, and P15—organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.


2007 ◽  
Vol 179 (7) ◽  
pp. 1539-1553 ◽  
Author(s):  
Rosa Ana Lacalle ◽  
Rosa M. Peregil ◽  
Juan Pablo Albar ◽  
Ernesto Merino ◽  
Carlos Martínez-A ◽  
...  

Directional cell movement in response to external chemical gradients requires establishment of front–rear asymmetry, which distinguishes an up-gradient protrusive leading edge, where Rac-induced F-actin polymerization takes place, and a down-gradient retractile tail (uropod in leukocytes), where RhoA-mediated actomyosin contraction occurs. The signals that govern this spatial and functional asymmetry are not entirely understood. We show that the human type I phosphatidylinositol 4-phosphate 5-kinase isoform β (PIPKIβ) has a role in organizing signaling at the cell rear. We found that PIPKIβ polarized at the uropod of neutrophil-differentiated HL60 cells. PIPKIβ localization was independent of its lipid kinase activity, but required the 83 C-terminal amino acids, which are not homologous to other PIPKI isoforms. The PIPKIβ C terminus interacted with EBP50 (4.1-ezrin-radixin-moesin (ERM)-binding phosphoprotein 50), which enabled further interactions with ERM proteins and the Rho-GDP dissociation inhibitor (RhoGDI). Knockdown of PIPKIβ with siRNA inhibited cell polarization and impaired cell directionality during dHL60 chemotaxis, suggesting a role for PIPKIβ in these processes.


1984 ◽  
Vol 99 (5) ◽  
pp. 1613-1623 ◽  
Author(s):  
K Jacobson ◽  
D O'Dell ◽  
B Holifield ◽  
T L Murphy ◽  
J T August

The distribution in living cells of an 80,000-dalton major cell surface glycoprotein of murine fibroblasts has been studied by use of monoclonal antibodies. The presence of the molecule throughout the plasma membrane and on the substrate attached surface of the cell was demonstrated by immunofluorescence. Cell growth kinetics were not altered and the cells remained motile in the presence of the antibody. The uniform distribution of the direct immunofluorescence stain persisted for long periods (greater than 100 h), which indicates that the fluorescent monoclonal antibodies may be used to trace antigen surface distribution during cell functions. In motile cells, but not G0 or confluent cells, the degree of fluorescent staining decreased toward the leading edge; this gradient increased markedly during the time that the antibody was bound to the cells. However, the gradation was not seen with the lipid probe, dihexadecylindocarbocyanine. The antigen was "patched" only by the application of a second antibody directed to the rat monoclonal antibody and the relationships of these patches to the underlying cytoskeleton were characterized.


Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1337-1340 ◽  
Author(s):  
Su Kyoung Kim ◽  
Asako Shindo ◽  
Tae Joo Park ◽  
Edwin C. Oh ◽  
Srimoyee Ghosh ◽  
...  

The planar cell polarity (PCP) signaling pathway governs collective cell movements during vertebrate embryogenesis, and certain PCP proteins are also implicated in the assembly of cilia. The septins are cytoskeletal proteins controlling behaviors such as cell division and migration. Here, we identified control of septin localization by the PCP protein Fritz as a crucial control point for both collective cell movement and ciliogenesis in Xenopus embryos. We also linked mutations in human Fritz to Bardet-Biedl and Meckel-Gruber syndromes, a notable link given that other genes mutated in these syndromes also influence collective cell movement and ciliogenesis. These findings shed light on the mechanisms by which fundamental cellular machinery, such as the cytoskeleton, is regulated during embryonic development and human disease.


Sign in / Sign up

Export Citation Format

Share Document