scholarly journals P42 Movement Protein of Beet necrotic yellow vein virus Is Targeted by the Movement Proteins P13 and P15 to Punctate Bodies Associated with Plasmodesmata

2000 ◽  
Vol 13 (5) ◽  
pp. 520-528 ◽  
Author(s):  
M. Erhardt ◽  
M. Morant ◽  
C. Ritzenthaler ◽  
C. Stussi-Garaud ◽  
H. Guilley ◽  
...  

Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins—P42, P13, and P15—organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.

2004 ◽  
Vol 17 (8) ◽  
pp. 921-930 ◽  
Author(s):  
Andrey A. Zamyatnin ◽  
Andrey G. Solovyev ◽  
Eugene I. Savenkov ◽  
Anna Germundsson ◽  
Maria Sandgren ◽  
...  

TGBp1, TGBp2, and TGBp3, three plant virus movement proteins encoded by the “triple gene block” (TGB), may act in concert to facilitate cell-to-cell transport of viral RNA genomes. Transient expression of Potato mop-top virus (genus Pomovirus) movement proteins was used as a model to reconstruct interactions between TGB proteins. In bombarded epidermal cells of Nicotiana benthamiana, green fluorescent protein (GFP)-TGBp1 was distributed uniformly. However, in the presence of TGBp2 and TGBp3, GFP-TGBp1 was directed to intermediate bodies at the cell periphery, and to cell wall-embedded punctate bodies. Moreover, GFP-TGBp1 migrated into cells immediately adjacent to the bombarded cell. These data suggest that TGBp2 and TGBp3 mediate transport of GFP-TGBp1 to and through plasmodesmata. Mutagenesis of TGBp1 suggested that the NTPase and helicase activities of TGBp1 were not required for its transport to intermediate bodies directed by TGBp2 and TGBp3, but these activities were essential for the protein association with cell wall-embedded punctate bodies and translocation of TGBp1 to neighboring cells. The C-terminal region of TGBp1 was critical for trafficking mediated by TGBp2 and TGBp3. Mutation analysis also suggested an involvement of the TGBp2 C-terminal region in interactions with TGBp1.


1998 ◽  
Vol 11 (7) ◽  
pp. 618-625 ◽  
Author(s):  
Emmanuelle Lauber ◽  
Claudine Bleykasten-Grosshans ◽  
M. Erhardt ◽  
S. Bouzoubaa ◽  
G. Jonard ◽  
...  

Cell-to-cell movement of beet necrotic yellow vein virus (BNYVV) requires three proteins encoded by a triple gene block (TGB) on viral RNA 2. A BNYVV RNA 3-derived replicon was used to express movement proteins of other viruses and the ability of these proteins to functionally substitute for the BNYVV TGB proteins was tested by coinoculation of TGB-defective BNYVV with the various replicons to Chenopodium quinoa. Trans-heterocomplementation was successful with the movement protein (P30) of tobacco mosaic virus but not with the tubule-forming movement proteins of alfalfa mosaic virus and grapevine fanleaf virus. Trans-complementation of BNYVV movement was also observed when all three TGB proteins of the distantly related peanut clump virus were supplied together but not when they were substituted for their BNYVV counterparts one by one. When P30 was used to drive BNYVV movement in trans, accumulation of the first TGB protein of BNYVV was adversely affected by null mutations in the second and third TGB proteins. Taken together, these results suggest that highly specific interactions among cognate TGB proteins are important for their function and/or stability in planta.


2001 ◽  
Vol 14 (10) ◽  
pp. 1158-1167 ◽  
Author(s):  
Atsushi Tamai ◽  
Tetsuo Meshi

Potato virus X (PVX) requires three proteins, p25, p12, and p8, encoded by the triple gene block plus the coat protein (CP) for cell-to-cell movement. When each of these proteins was co-expressed with a cytosolic green fluorescent protein (GFP) in the epidermal cells of Nicotiana benthamiana by the microprojectile bombardment-mediated gene delivery method, only p12 enhanced diffusion of co-expressed GFP, indicating an ability to alter plasmodesmal permeability. p25, p12, and CP, expressed transiently in the initially infected cells, transcomplemented the corresponding movement-defective mutants to spread through two or more cell boundaries. Thus, these proteins probably move from cell to cell with the genomic RNA. In contrast, p8 only functioned intracellularly and was not absolutely required for cell-to-cell movement. Since overexpression of p12 overcame the p8 deficiency, p8 appears to facilitate the functioning of p12, presumably by mediating its intracellular trafficking. Considering the likelihood that p12 and p8 are membrane proteins, it is suggested that intercellular as well as intracellular movement of PVX involves a membrane-mediated process.


2001 ◽  
Vol 75 (18) ◽  
pp. 8712-8723 ◽  
Author(s):  
Diane M. Lawrence ◽  
A. O. Jackson

ABSTRACT We have recently used a green fluorescent protein (GFP) fusion to the γb protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The γb protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAβ but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, βb (TGB1), βc (TGB3), and βd (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65–75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins.


Virology ◽  
2005 ◽  
Vol 340 (1) ◽  
pp. 155-166 ◽  
Author(s):  
M. Erhardt ◽  
G. Vetter ◽  
D. Gilmer ◽  
S. Bouzoubaa ◽  
K. Richards ◽  
...  

2010 ◽  
Vol 23 (10) ◽  
pp. 1231-1247 ◽  
Author(s):  
Jeanmarie Verchot-Lubicz ◽  
Lesley Torrance ◽  
Andrey G. Solovyev ◽  
Sergey Yu Morozov ◽  
Andrew O. Jackson ◽  
...  

Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.


1997 ◽  
Vol 10 (2) ◽  
pp. 240-246 ◽  
Author(s):  
Claudine Bleykasten-Grosshans ◽  
H. Guilley ◽  
S. Bouzoubaa ◽  
K. E. Richards ◽  
G. Jonard

Cell-to-cell movement of beet necrotic yellow vein furovirus is controlled by three slightly overlapping genes on RNA 2 called the triple gene block (TGB) encoding, in order, P42, P13, and P15. Synthesis of P42 is directed by subgenomic RNA 2suba while synthesis of both P13 and P15 is probably directed by a dicistronic subgenomic RNA, 2subb. For complementation experiments, each TGB protein gene was inserted into a “replicon” derived from viral RNA 3. In mixed infections, the replicons expressing P42 and P13 complemented RNA 2 mutants defective in the corresponding gene. A P15-containing replicon did not complement a P15-defective RNA 2 but complementation was observed with a dicistronic replicon containing the P15 gene placed behind the P13 gene. In mixed infections with wild-type viral RNAs, the P15-containing replicon did not inhibit viral RNA replication in protoplasts but blocked local lesion formation on leaves. Infection of leaves was also inhibited by an RNA3-derived replicon containing the third TGB gene from another furovirus, peanut clump virus. The results are consistent with a model in which viral cell-to-cell movement requires production of appropriate relative amounts of P13 and P15, and their expression from a dicistronic subgenomic RNA provides a mechanism for coordinating their synthesis.


2005 ◽  
Vol 86 (10) ◽  
pp. 2879-2889 ◽  
Author(s):  
N. I. Lukhovitskaya ◽  
N. E. Yelina ◽  
A. A. Zamyatnin ◽  
M. V. Schepetilnikov ◽  
A. G. Solovyev ◽  
...  

Potato mop-top virus (PMTV) RNA3 contains a triple gene block (TGB) encoding viral movement proteins and an open reading frame for a putative 8 kDa cysteine-rich protein (CRP). In this study, PMTV CRP was shown to be expressed in the course of virus infection, and a PMTV CRP-specific subgenomic RNA was mapped. CRP has previously been shown to be dispensable for infection of PMTV in Nicotiana benthamiana. In this study, PMTV CRP was found to increase the severity of disease symptoms when expressed from Potato virus X or Tobacco mosaic virus in N. benthamiana and Nicotiana tabacum, suggesting that the protein affects virulence of the virus or might suppress a host defence mechanism. However, PMTV CRP did not show RNA silencing suppression activity in three assays. Host responses to the PMTV CRP expression from different viral genomes ranged from an absence of response to extreme resistance at a single cell level and were dependent on the viral genome. These findings emphasized involvement of viral proteins and/or virus-induced cell components in the plant reaction to CRP. PMTV CRP was predicted to possess a transmembrane segment. CRP fused to the green fluorescent protein was associated with endoplasmic reticulum-derived membranes and induced dramatic rearrangements of the endoplasmic reticulum structure, which might account for protein functions as a virulence factor of the virus.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Xiaoyun Wu ◽  
Jiahui Liu ◽  
Mengzhu Chai ◽  
Jinhui Wang ◽  
Dalong Li ◽  
...  

ABSTRACTPlant viruses usually encode one or more movement proteins (MP) to accomplish their intercellular movement. A group of positive-strand RNA plant viruses requires three viral proteins (TGBp1, TGBp2, and TGBp3) that are encoded by an evolutionarily conserved genetic module of three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB). However, how these three viral movement proteins function cooperatively in viral intercellular movement is still elusive. Using a novelin vivodouble-stranded RNA (dsRNA) labeling system, we showed that the dsRNAs generated by potato virus X (PVX) RNA-dependent RNA polymerase (RdRp) are colocalized with viral RdRp, which are further tightly covered by “chain mail”-like TGBp2 aggregates and localizes alongside TGBp3 aggregates. We also discovered that TGBp2 interacts with the C-terminal domain of PVX RdRp, and this interaction is required for the localization of TGBp3 and itself to the RdRp/dsRNA bodies. Moreover, we reveal that the central and C-terminal hydrophilic domains of TGBp2 are required to interact with viral RdRp. Finally, we demonstrate that knockout of the entire TGBp2 or the domain involved in interacting with viral RdRp attenuates both PVX replication and movement. Collectively, these findings suggest that TGBp2 plays dual functional roles in PVX replication and intercellular movement.IMPORTANCEMany plant viruses contain three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB), for intercellular movement. However, how the corresponding three proteins coordinate their functions remains obscure. In the present study, we provided multiple lines of evidence supporting the notion that PVX TGBp2 functions as the molecular adaptor bridging the interaction between the RdRp/dsRNA body and TGBp3 by forming “chain mail”-like structures in the RdRp/dsRNA body, which can also enhance viral replication. Taken together, our results provide new insights into the replication and movement of PVX and possibly also other TGB-containing plant viruses.


2008 ◽  
Vol 82 (10) ◽  
pp. 4991-5006 ◽  
Author(s):  
Hyoun-Sub Lim ◽  
Jennifer N. Bragg ◽  
Uma Ganesan ◽  
Diane M. Lawrence ◽  
Jialin Yu ◽  
...  

ABSTRACT Barley stripe mosaic virus (BSMV) encodes three movement proteins in an overlapping triple gene block (TGB), but little is known about the physical interactions of these proteins. We have characterized a ribonucleoprotein (RNP) complex consisting of the TGB1 protein and plus-sense BSMV RNAs from infected barley plants and have identified TGB1 complexes in planta and in vitro. Homologous TGB1 binding was disrupted by site-specific mutations in each of the first two N-terminal helicase motifs but not by mutations in two C-terminal helicase motifs. The TGB2 and TGB3 proteins were not detected in the RNP, but affinity chromatography and yeast two-hybrid experiments demonstrated that TGB1 binds to TGB3 and that TGB2 and TGB3 form heterologous interactions. These interactions required the TGB2 glycine 40 and the TGB3 isoleucine 108 residues, and BSMV mutants containing these amino acid substitution were unable to move from cell to cell. Infectivity experiments indicated that TGB1 separated on a different genomic RNA from TGB2 and TGB3 could function in limited cell-to-cell movement but that the rates of movement depended on the levels of expression of the proteins and the contexts in which they are expressed. Moreover, elevated expression of the wild-type TGB3 protein interfered with cell-to-cell movement but movement was not affected by the similar expression of a TGB3 mutant that fails to interact with TGB2. These experiments suggest that BSMV movement requires physical interactions of TGB2 and TGB3 and that substantial deviation from the TGB protein ratios expressed by the wild-type virus compromises movement.


Sign in / Sign up

Export Citation Format

Share Document