Faculty Opinions recommendation of HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail.

Author(s):  
Elizabeth Smythe
Keyword(s):  
Mhc I ◽  
2004 ◽  
Vol 167 (5) ◽  
pp. 903-913 ◽  
Author(s):  
Jeremiah F. Roeth ◽  
Maya Williams ◽  
Matthew R. Kasper ◽  
Tracey M. Filzen ◽  
Kathleen L. Collins

To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Brennan S. Dirk ◽  
Emily N. Pawlak ◽  
Aaron L. Johnson ◽  
Logan R. Van Nynatten ◽  
Rajesh A. Jacob ◽  
...  
Keyword(s):  
Mhc I ◽  

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Yushen Du ◽  
Tian-Hao Zhang ◽  
Lei Dai ◽  
Xiaojuan Zheng ◽  
Aleksandr M. Gorin ◽  
...  

ABSTRACT Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.


Viruses ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 222 ◽  
Author(s):  
Christian Setz ◽  
Melanie Friedrich ◽  
Pia Rauch ◽  
Kirsten Fraedrich ◽  
Alina Matthaei ◽  
...  
Keyword(s):  
Mhc I ◽  

2021 ◽  
Vol 118 (21) ◽  
pp. e2101450118
Author(s):  
Tafhima Haider ◽  
Xenia Snetkov ◽  
Clare Jolly

SERINC5 is a potent lentiviral restriction factor that gets incorporated into nascent virions and inhibits viral fusion and infectivity. The envelope glycoprotein (Env) is a key determinant for SERINC restriction, but many aspects of this relationship remain incompletely understood, and the mechanism of SERINC5 restriction remains unresolved. Here, we have used mutants of HIV-1 and HIV-2 to show that truncation of the Env cytoplasmic tail (ΔCT) confers complete resistance of both viruses to SERINC5 and SERINC3 restriction. Critically, fusion of HIV-1 ΔCT virus was not inhibited by SERINC5 incorporation into virions, providing a mechanism to explain how EnvCT truncation allows escape from restriction. Neutralization and inhibitor assays showed ΔCT viruses have an altered Env conformation and fusion kinetics, suggesting that EnvCT truncation dysregulates the processivity of entry, in turn allowing Env to escape targeting by SERINC5. Furthermore, HIV-1 and HIV-2 ΔCT viruses were also resistant to IFITMs, another entry-targeting family of restriction factors. Notably, while the EnvCT is essential for Env incorporation into HIV-1 virions and spreading infection in T cells, HIV-2 does not require the EnvCT. Here, we reveal a mechanism by which human lentiviruses can evade two potent Env-targeting restriction factors but show key differences in the capacity of HIV-1 and HIV-2 to exploit this. Taken together, this study provides insights into the interplay between HIV and entry-targeting restriction factors, revealing viral plasticity toward mechanisms of escape and a key role for the long lentiviral EnvCT in regulating these processes.


2018 ◽  
Author(s):  
Alba Torrents de la Peña ◽  
Kimmo Rantalainen ◽  
Christopher A. Cottrell ◽  
Joel D. Allen ◽  
Marit J. van Gils ◽  
...  

AbstractThe HIV-1 envelope glycoprotein (Env) trimer is located on the surface of the virus and is the target of broadly neutralizing antibodies (bNAbs). Recombinant native-like soluble Env trimer mimetics, such as SOSIP trimers, have taken a central role in HIV-1 vaccine research aimed at inducing bNAbs. We therefore performed a direct and thorough comparison of a full-length native Env trimer containing the transmembrane domain and the cytoplasmic tail, with the sequence matched soluble SOSIP trimer, both based on an early Env sequence (AMC011) from an HIV+ individual that developed bNAbs. The structures of the full-length AMC011 trimer bound to either bNAb PGT145 or PGT151 were very similar to the structures of SOSIP trimers. Antigenically, the full-length and SOSIP trimers were comparable, but in contrast to the full-length trimer, the SOSIP trimer did not bind at all to non-neutralizing antibodies, most likely as a consequence of the intrinsic stabilization of the SOSIP trimer. Furthermore, the glycan composition of full-length and SOSIP trimers was similar overall, but the SOSIP trimer possessed slightly less complex and less extensively processed glycans, which may relate to the intrinsic stabilization as well as the absence of the membrane tether. These data provide insights into how to best use and improve membrane-associated full-length and soluble SOSIP HIV-1 Env trimers as immunogens.


2019 ◽  
Author(s):  
Kengo Hirao ◽  
Sophie Andrews ◽  
Kimiko Kuroki ◽  
Hiroki Kusaka ◽  
Takashi Tadokoro ◽  
...  

SummaryThe HIV accessory protein Nef plays a major role in establishing and maintaining infection, particularly through immune evasion. Many HIV-2 infected people experience long-term viral control and survival, resembling HIV-1 elite control. HIV-2 Nef has overlapping but also distinct functions from HIV-1 Nef. Here we report the crystal structure of HIV-2 Nef core. The dileucine sorting motif forms a helix bound to neighboring molecules, and moreover, isothermal titration calorimetry demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef, ensuring AP-2 mediated endocytosis for CD3. The highly-conserved C-terminal region forms a α-helix, absent from HIV-1. We further determined the structure of SIV Nef harboring this region, demonstrating similar C-terminal α-helix, which may contribute to AP-1 binding for MHC-I downregulation. These results provide new insights into the distinct pathogenesis of HIV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document