Faculty Opinions recommendation of Structure and function of bacterial communities emerging from different sources under identical conditions.

Author(s):  
Ian M Head
Author(s):  
Shen Jean Lim ◽  
Brenton Davis ◽  
Danielle Gill ◽  
John Swetenburg ◽  
Laurie C Anderson ◽  
...  

Abstract Lucinid bivalves harbor environmentally acquired, chemosynthetic, gammaproteobacterial gill endosymbionts. Lucinid gill microbiomes, which may contain other gammaproteobacterial and/or spirochete taxa, remain under-sampled. To understand inter-host variability of the lucinid gill microbiome, specifically in the bacterial communities, we analyzed the microbiome content of Stewartia floridana collected from Florida. Sampled gills contained a monospecific gammaproteobacterial endosymbiont expressing lithoautotrophic, mixotrophic, diazotrophic, and C1 compound oxidation-related functions previously characterized in similar lucinid species. Another low-abundance Spirochaeta-like species in ∼72% of the sampled gills was most closely related to Spirochaeta-like species in another lucinid Phacoides pectinatus and formed a clade with known marine Spirochaeta symbionts. The spirochete expressed genes were involved in heterotrophy and the transport of sugars, amino acids, peptides, and other substrates. Few muscular and neurofilament genes from the host and none from the gammaproteobacterial and spirochete symbionts were differentially expressed among quadrats predominantly covered with seagrass species or 80% bare sand. Our results suggest that spirochetes are facultatively associated with S. floridana, with potential scavenging and nutrient cycling roles. Expressed stress- and defense-related functions in the host and symbionts also suggest species-species communications, which highlight the need for further study of the interactions among lucinid hosts, their microbiomes, and their environment.


2006 ◽  
Vol 72 (1) ◽  
pp. 212-220 ◽  
Author(s):  
Silke Langenheder ◽  
Eva S. Lindström ◽  
Lars J. Tranvik

ABSTRACT The aim of this study was to compare two major hypotheses concerning the formation of bacterial community composition (BCC) at the local scale, i.e., whether BCC is determined by the prevailing local environmental conditions or by “metacommunity processes.” A batch culture experiment where bacteria from eight distinctly different aquatic habitats were regrown under identical conditions was performed to test to what extent similar communities develop under similar selective pressure. Differently composed communities emerged from different inoculum communities, as determined by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. There was no indication that similarity increased between communities upon growth under identical conditions compared to that for growth at the ambient sampling sites. This suggests that the history and distribution of taxa within the source communities were stronger regulating factors of BCC than the environmental conditions. Moreover, differently composed communities were different with regard to specific functions, such as enzyme activities, but maintained similar broad-scale functions, such as biomass production and respiration.


2005 ◽  
Vol 71 (6) ◽  
pp. 3137-3143 ◽  
Author(s):  
Aaron M. J. Law ◽  
Michael D. Aitken

ABSTRACT Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations (∼105 CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.


2007 ◽  
Vol 9 (11) ◽  
pp. 2795-2809 ◽  
Author(s):  
Katja Opelt ◽  
Vladimir Chobot ◽  
Franz Hadacek ◽  
Susan Schönmann ◽  
Leo Eberl ◽  
...  

2018 ◽  
Author(s):  
Mario E. Muscarella ◽  
Claudia M. Boot ◽  
Corey D. Broeckling ◽  
Jay T. Lennon

ABSTRACTMicrobial diversity is strongly affected by the bottom-up effects of resource availability. However, because resource pools often exist as heterogeneous mixtures of distinct molecules, resource heterogeneity may also affect community diversity. To test this hypothesis, we surveyed bacterial communities in lakes that varied in resource concentration. In addition, we characterized resource heterogeneity in these lakes using an ecosystem metabolomics approach. Overall, resource concentration and resource heterogeneity affected bacterial resource-diversity relationships. We found strong relationships between bacterial alpha-diversity (richness and evenness) and resource concentration and richness, but richness and evenness responded in different ways. Likewise, we found associations between the composition of the bacterial community and both resource concentration and composition, but the relationship with resource composition was stronger. Last, in the surveyed communities the presence of resource generalists may have reduced the effect of resource heterogeneity on community composition. These results have implications for understanding the interactions between bacteria and organic matter and suggest that changes in organic matter composition may alter the structure and function of bacterial communities.


Sign in / Sign up

Export Citation Format

Share Document